The Road So Far...

- Last week & This week

1. Construct geometry
 - Define transformations
 - Assign material properties

2. Vertex Transformations

3. Culling & Clipping
 - Determine front-facing triangles
 - Determine which vertices are visible

4. Rasterization
 - Fill the triangle with fragments

5. Vertex Shader
 - Object's local space → viewport space

6. Fragment Shading
 - Calculate correct color values

7. Visibility Tests
 - Is the fragment visible?

8. Blending
 - Blend together multiple fragments
Frames of References

- Can you name different spaces (frames of references) we use?
Frames of References

- Can you name different spaces (frames of references) we use?
Object Space → World Space

• We model our objects in object space
 • Symmetrically from the origin
• We position, orient and scale our object in the world space with the **model matrix**
• World space is like the root node in the scene graph
 • Located in an origin
 • Every child transformed relative to it
This is what you did last week. :)

Object Space → World Space
World Space \rightarrow Camera Space

- We want to represent everything related to the camera (to make projection easier)
- We can think of the camera as another object in the scene.
 - It has its own rotation and position.
 - Scale is not really relevant for the camera.
World Space → Camera Space

- Assume that we have a camera's model transformation matrix:

\[
M_{\text{camera}} = \begin{pmatrix}
right_x & up_x & back_x & pos_x \\
right_y & up_y & back_y & pos_y \\
right_z & up_z & back_z & pos_z \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

- Remember that the columns are the transformed standard basis...

- Can you come up with a matrix that describes our world relative to the camera?
World Space → Camera Space

- **View matrix** can be found like this:

\[
V = \begin{pmatrix}
 right_x & right_y & right_z & 0 \\
 up_x & up_y & up_z & 0 \\
 back_z & back_y & back_z & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
 1 & 0 & 0 & -pos_x \\
 0 & 1 & 0 & -pos_y \\
 0 & 0 & 1 & -pos_z \\
 0 & 0 & 0 & 1
\end{pmatrix}
\]

- Transpose the rotation to inverse it
- Negate the translation to inverse it
- Multiply together in the reverse order
World Space → Camera Space

- Usually it is more intuitive to specify the camera by its position; point it is looking at; and the up-vector.
- The up-vector may not be the same as the y-direction of camera's space. It just give a rough orientation.

Three.js:
camera.position.set(x, y, z);
camera.up.set(upX, upY, upZ);
camera.lookAt(point);

OpenGL:

```cpp
glm::mat4 view = glm::lookAt(
    glm::vec3(x, y, z),
    glm::vec3(pX, pY, pZ),
    glm::vec3(upX, upY, upZ)
);
```
World Space → Camera Space

● Using the lookAt() command parameters, how to find the correct matrix?
● What do we have and what do we need?
Camera Space → ND Space

- For the **normalized device space**, we transform the view frustum into a cube \([-1, 1]^3\).
- We want to flip the z axis, because our near and far planes are positive values.
- This is the job for the **projection matrix** together with the **point normalization**.
- But there are different types of projection:
 - Orthographic
 - Oblique
 - Perspective
Camera Space \rightarrow ND Space

Perspective
- Near Plane
- Far Plane
- Top Plane
- Bottom Plane

Orthographic
- Near Plane
- Far Plane
- Top Plane
- Bottom Plane

Slices from $x=0$ plane
Orthographic Projection

- We define our view volume with the values for **left, right, top, bottom, near** and **far** planes.
- What would be the matrix that transforms the view volume into a canonical view volume ([-1, 1]^3)?
Perspective Projection

- Usually defined by the vertical angle for the field-of-view (FOV), the aspect ratio and the near and far planes.

- How to find the left, right, top and bottom values, assuming that the projection is symmetric?

 top = -bottom
 left = -right
Perspective Projection

• Differently from the orthographic projection, here we have a viewer located in a single point.

• Similarly we want to find the normalized device coordinates for all points inside the view volume.
Perspective Projection

- First map the x and y coordinates to the correct range using similar triangles.
Perspective Projection

\[
P = \begin{pmatrix}
\frac{\text{near}}{\text{right}} & 0 & 0 & 0 \\
0 & \frac{\text{near}}{\text{top}} & 0 & 0 \\
0 & 0 & -1 & 0
\end{pmatrix}
\]

- If the third row would be \((0, 0, 1, 0)\), then all \(z\) coordinates become -1 (because we found the projected coordinates on the near plane)
Perspective Projection

- We want to map the z value from the range $[\text{near}, \text{far}]$ to the range $[-1, 1]$.
- We can use scale and translation.

$$P = \begin{bmatrix}
\text{near} & 0 & 0 & 0 \\
\text{right} & 0 & 0 & 0 \\
0 & \text{near} & 0 & 0 \\
0 & 0 & s & t \\
0 & 0 & -1 & 0
\end{bmatrix}$$
Perspective Projection

- We want to map the z value from the range [near, far] to the range [-1, 1], so...

\[
\begin{align*}
 s \cdot \text{near} + t &= -1 \\
 s \cdot \text{far} + t &= 1
\end{align*}
\]

Can this be solved for s and t?

\[
P = \begin{bmatrix}
 \text{near} & 0 & 0 & 0 \\
 \text{right} & 0 & 0 & 0 \\
 \text{top} & 0 & 0 & s & t \\
 0 & 0 & -1 & 0
\end{bmatrix}
\]
Perspective Projection

- After applying this matrix and doing the point normalization (dividing with \(w \)), you have the perspective projection.

\[
P = \begin{bmatrix}
\frac{\text{near}}{\text{right}} & 0 & 0 & 0 & 0 \\
0 & \frac{\text{near}}{\text{top}} & 0 & 0 & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -\frac{2 \cdot fn}{f-n} & 0 \\
0 & 0 & -1 & 0 & 0
\end{bmatrix}
\]
Clip Space

- After the projection matrix multiplication and before the w-division, vertices are in a clip space.
- That is the space, where it is the most easiest to determine, which triangles need to be clipped or culled.
- **Clipping** – performed when some part of the triangle is inside the view volume.
- **Culling** – performed when the triangle is not inside the view volume. Or is back-facing.
ND Space → Screen Space

- We have everything we want to show now in the $[-1, 1]^3$ cube (normalized device space).
- We also know the correct relative depth of the vertices.
- How to know where to draw on the screen?

Come up with that matrix...
ND Space → Screen Space

- This is done for you, the matrix is constructed when you specify the viewport size.

Three.js
renderer = new THREE.WebGLRenderer();
renderer.setSize(width, height);

OpenGL + GLFW
win = glfwCreateWindow(width, height, "Hello GLFW!", NULL, NULL)
Overall

Object Space → World Space →

→ Camera Space →

Light calculations are usually in this space!
Overall

→ Normalized Device Space

→ Screen Space
Overall

- Vertex shader must return homogeneous coordinates in the clip space – that is in normalized device space without the \(w \)-division.

\[
gl_Position = \text{projection} \times \text{model} \times \text{view} \times \text{vec4(position, 1.0)};
\]

\[
gl_Position = \text{projectionMatrix} \times \text{modelViewMatrix} \times \text{vec4(position, 1.0)};
\]

\[
gl_Position = \text{modelViewProjectionMatrix} \times \text{vec4(position, 1.0)};
\]

- Next GPU does:
 - \(w \)-division
 - Screen space transformation
Additional Links

- General overview: http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/
- How to derive the view matrix: http://3dgep.com/understanding-the-view-matrix/
- How to derive the projection matrices: http://www.songho.ca/opengl/gl_projectionmatrix.html
- About transforming the surface normals: http://www.lighthouse3d.com/tutorials/glsl-tutorial/the-normal-matrix/
What was interesting for you today?
What more would you like to know?

Next time
Shading and Lighting