Computer Graphics

MTAT.03.015

Raimond Tunnel

Study IT in .ee
The Road So Far...

- **Last week**
 - Construct geometry
 - Define transformations
 - Assign material properties...

- **This week**
 - Culling & Clipping
 - Rasterization
 - Fragment Shading
 - Visibility Tests
 - Blending

- **Next week**
 - Vertex Transformations
 - Vertex Shader
 - Object's local space \(\rightarrow\) viewport space
 - Determine front-facing triangles
 - Determine which vertices are visible
 - Fill the triangle with fragments
 - Fragment Shader
 - Calculate correct color values
 - Is the fragment visible?
 - Blend together multiple fragments
More Granular Surface Color

- Blades – 4 different meshes:
 - 2 blades
 - Each blade consists of two parts

Chopper by Annika Hansalu
More Granular Surface Color

- Extra vertices and faces that all need parsing

- Could we get the same result with only 4 vertices?
More Granular Surface Color

- We would need to specify at which fragment we take which color.
- We can no longer interpolate the color, but should somehow specify a mapping.
(Raster) Image

- Image is a matrix of point values.

- But, our 3D surface is continuous, we may rasterize a varying amount of points in a face.
Upscale

- Sometimes we want to see the surface in more detail than there are point values in the image.
Upscale

- For a single point in the larger surface, we usually have 4 neighbours in the texture.
- What could be the exception?
- What possibilities we have to find a value?
With that in mind, what would be a smallest texture we need for the chopper blade here?
Upscale

• Given a texture with some $width \times height$, how to find the nearest, or 4 nearest texels?
Downscale

- We can do the same interpolation for the downscale.
Downscale

- What can go wrong?
Nyquist–Shannon Sampling Theorem

- In order to reconstruct a band-limited signal, one has to sample with sampling rate more than twice the highest frequency.

This means more than 2 samples per period, every period.
Nyquist–Shannon Sampling Theorem

- Band-limited signal – there is a fixed highest frequency in the signal.
- The signals in real life are not band-limited.
- Reconstruction is possible only when we know the shape of the signal.
- Sampling less frequently, we produce an alias – signal with a lower frequency.
- Usually assumes samples are taken over a length of time.

Downscale

- So, what is happening in our example?

\[\text{Period} = 4 \Rightarrow \text{Frequency} = \frac{1}{4} \]

\[\text{Frequency}_{\text{Nyquist}} = \frac{2}{4} = \frac{1}{2} \]

\[\text{Frequency}_{\text{Us}} = \frac{1}{4} < \frac{1}{2} \]

We need more than 1 sample per two units.
Downscale

- We need more than 1 sample per 2 units.
- Is this even possible, if we want to downscale from 8×8 to 2×2?
Downscale

- But we do not want to create Moire aliasing either.
- Our texture is not white, a 2×2 downscale should not be white either.
- One unit in the result covers 16 units in the texture. How to represent all those 16 values?
Mipmapping

- In order not to take that many samples each time for downscaling, we take them beforehand.
Mipmapping

- What if we have a texture that is 10×10.
 - The first mipmap is the image itself – 10×10.
 - Then we take half the size – 5×5.
 - Next we take half the size – 2.5... Uh-oh.
- The last mipmap we could create is 5×5.
- For a smaller downscale (eg 2×2, 1×1) we still need to sample more than the 4 neighbouring pixels.
- How not to have that problem?
Mipmapping

- Assume we have mipmaps 8×8, 4×4, 2×2, 1×1.
- We want to show our texture on a 6×6 area.
- Which mipmap should we sample?
Filtering

• We have seen several ways to sample the texture.

• Upscale (magnification filtering):
 • Nearest neighbour
 • Bilinear

• Downscale (minification filtering):
 • Nearest neighbour (mipmap: no, NN, linear)
 • Bilinear (mipmap: no, NN, linear)

Questions?

Also called trilinear
Anisotropic Filtering

- We assumed that the result we are showing our texture on is shown as a square. This is usually not the case.
- If we rotate our quad around the x-axis for example, then we might get that the texture needs to be shown on a 10×5 area instead of 10×10.
Anisotropic Filtering

• We have more resolution in width then in height. It is unfair to average both dimensions equally.

• Anisotropic filtering will use the higher mipmap and take more samples along the denser direction.

No anisotropic filtering 16x anisotropic filtering
Anisotropic Filtering

- Actual implementations are vendor dependant.
- One way would be to just create anisotropic mipmaps.
Textures

- There are more uses for textures than just storing granular color of a material.
 - Data textures – we can hold other data like normals or other values with 3 (or 4) coordinates.
 - Noise texture – we can store samples of a random function in a texture to procedurally generate things like the Perlin noise.
 - Render target – we could also render the current framebuffer to a texture.
What seemed useful today?

What more would you like to know?

Next time

Blending – Jaanus Jaggo