
  

Computer Graphics
MTAT.03.015

Raimond Tunnel



  

The Road So Far...



  

Bounding Box

● With bounding boxes you can detect collisions 
between boxes.



  

Bounding Box

● With bounding boxes you can detect collisions 
between boxes.

● Our hangar just happens to be a box.



  

Bounding Box

● With bounding boxes you can detect collisions 
between boxes.

● Our hangar just happens to be a box.
● The chopper is not a 

box, but the collision 
approximation with a 
bounding box seems 
ok.



  

Bounding Box

● With bounding boxes you can detect collisions 
between boxes.

● Our hangar just happens to be a box.
● The chopper is not a box, but the collision 

approximation with a bounding box seems ok.
● The bounding box is axis-aligned.



  

Bounding Box

● With bounding boxes you can detect collisions 
between boxes.

● Our hangar just happens to be a box.
● The chopper is not a box, but the collision 

approximation with a bounding box seems ok.
● The bounding box is axis-aligned.
● Some of you wrote 4 if-statements. 

That is a (kind of) bounding box collision 
detection for those specific boxes (around 
chopper, the hangar).



  

Collision Detection
● What if the hangar walls were rotated? Can not 

assume that all walls are always axis-aligned..



  

Collision Detection
● What if the hangar walls were rotated? Can not 

assume that all walls are always axis-aligned.
● What if the chopper was rotated?



  

Collision Detection
● What if the hangar walls were rotated? Can not 

assume that all walls are always axis-aligned.
● What if the chopper rotated?
● The rotating blades actually would need a 

cylinder to minimally bound them.



  

Collision Detection
● What if the hangar walls were rotated? Can not 

assume that all walls are always axis-aligned.
● What if the chopper rotated?
● The rotating blades actually would need a 

cylinder to minimally bound them.
● Bounding objects provide a fast and rough 

approximation.



  

Ray Casting
● Cast rays out of some vertices, following the 

vertex normal.



  

Ray Casting

● Detect the first hit of ray and scene geometry.



  

Ray Casting

● Detect the first hit of ray and scene geometry.
● Measure the distance from the vertex to the hit.



  

Ray Casting

● Detect the first hit of ray and scene geometry.
● Measure the distance from the vertex to the hit.
● If the distance is too small, change the 

chopper's position, speed, acceleation, in order 
to avoid a collision.



  

Ray Casting

● Detect the first hit of ray and scene geometry.
● Measure the distance from the vertex to the hit.
● If the distance is too small, change the 

chopper's position, speed, acceleation, in order 
to avoid a collision.

● Intersection testing:
● Intersection testing between a variety of objects:

http://www.realtimerendering.com/intersections.html 

http://www.realtimerendering.com/intersections.html


  

Möller-Trumbore Ray Triangle

Ray(t)=Start+t⋅Direction



  

Möller-Trumbore Ray Triangle

●

●

Ray (t)=Start+t⋅Direction

Triangle(u , v)=v0+u⋅e0+v⋅e1



  

Möller-Trumbore Ray Triangle

●

●

● The    and    are actually 
Barycentric coordinates of 
vertices     and    .

Ray (t)=Start+t⋅Direction

Triangle(u , v)=v0+u⋅e0+v⋅e1

u v

v1 v2



  

Möller-Trumbore Ray Triangle

●

●

● The    and    are actually 
Barycentric coordinates of 
vertices     and    .

● What is the coordinate of     ?

Ray (t)=Start+t⋅Direction

Triangle(u , v)=v0+u⋅e0+v⋅e1

u v

v1 v2

v0



  

Möller-Trumbore Ray Triangle

●

●

● The    and    are actually 
Barycentric coordinates of 
vertices     and    .

● What is the coordinate of     ?
● Goal is to find a solution to 

the following equation:

Ray (t)=Start+t⋅Direction

Triangle(u , v)=v0+u⋅e0+v⋅e1

u v

v1 v2

Ray (t)=Triangle (u , v)

v0



  

Möller-Trumbore Ray Triangle

●

●

● The    and    are actually 
Barycentric coordinates of 
vertices     and    .

● What is the coordinate of     ?
● Goal is to find a solution to 

the following equation:

Ray(t)=Start+t⋅Direction

Triangle(u , v)=v0+u⋅e0+v⋅e1

u v

v1 v2

Ray (t)=Start+t⋅Direction=v0+u⋅e0+v⋅e1=Triangle (u , v)

v0



  

Möller-Trumbore Ray Triangle

● Let us call     the          and     the                .S Start D Direction



  

Möller-Trumbore Ray Triangle

● Let us call     the          and     the                .
● We can rearrange the terms to see better.

S+t⋅D=(1−u−v)v0+u⋅v1+v⋅v2

S Start D Direction



  

Möller-Trumbore Ray Triangle

● Let us call     the          and     the                .
● We can rearrange the terms to see better.

S+t⋅D=(1−u−v)v0+u⋅v1+v⋅v2

S Start D Direction

S−v0=u⋅(v1−v0)+v⋅(v2−v0)−t⋅D

Moving the constant 
values to one side...

Parameteres to the 
other side...



  

Möller-Trumbore Ray Triangle

● Let us call     the          and     the                .
● We can rearrange the terms to see better.

S+t⋅D=(1−u−v)v0+u⋅v1+v⋅v2

S Start D Direction

S−v0=u⋅(v1−v0)+v⋅(v2−v0)−t⋅D

Moving the constant 
values to one side...

Parameteres to the 
other side...

Notice the tria
ngle 

basis 
vectors a

gain...



  

Möller-Trumbore Ray Triangle

● Let us call     the          and     the                .
● We can rearrange the terms to see better.

S+t⋅D=(1−u−v)v0+u⋅v1+v⋅v2

S Start D Direction

S−v0=u⋅(v1−v0)+v⋅(v2−v0)−t⋅D

((v1−v0) (v2−v0) −D )⋅(
u
v
t )=S−v0

Converting into 
vector form



  

Möller-Trumbore Ray Triangle

● Let us call     the          and     the                .
● We can rearrange the terms to see better.

S+t⋅D=(1−u−v)v0+u⋅v1+v⋅v2

S Start D Direction

S−v0=u⋅(v1−v0)+v⋅(v2−v0)−t⋅D

((v1−v0) (v2−v0) −D )⋅(
u
v
t )=S−v0

● We are looking for the unknown vector (
u
v
t )



  

Möller-Trumbore Ray Triangle

● We are in 3D, so we have 3 equations for each 
dimension.

(e0 e1 −D)⋅(
u
v
t )=S−v0

Using the basis vectors 
for simpler writeup



  

Möller-Trumbore Ray Triangle

● We are in 3D, so we have 3 equations for each 
dimension.

● Cramer's rule

(e0 e1 −D)⋅(
u
v
t )=S−v0

a0,0⋅x+a0,1⋅y+a0,2⋅z=b0

a1,0⋅x+a1,1⋅y+a2,2⋅z=b1

a2,0⋅x+a2,1⋅y+a2,2⋅z=b2

x=
∣Ax∣
∣A∣

y=
∣Ay∣
∣A∣

z=
∣Az∣
∣A∣

Ax - first column replaced by b

Ay - second column replaced by b

Az - third column replaced by b



  

Möller-Trumbore Ray Triangle

● With Cramer's rule

(e0 e1 −D)⋅(
u
v
t )=S−v0 u=

∣
S x−v0x e1x −D x

S y−v0y e1y −D y

S z−v0z e1z −D z
∣

∣
e0x e1x −D x

e0y e1y −D y

e0z e1z −D z
∣

etc



  

Möller-Trumbore Ray Triangle

● With Cramer's rule

● Denote columns

(e0 e1 −D)⋅(
u
v
t )=S−v0 u=

∣
S x−v0x e1x −D x

S y−v0y e1y −D y

S z−v0z e1z −D z
∣

∣
e0x e1x −D x

e0y e1y −D y

e0z e1z −D z
∣

u=
∣b e1 −D∣
∣e0 e1 −D∣

b=S−v0

v=
∣e0 b −D∣
∣e0 e1 −D∣

t=
∣e0 e1 b∣

∣e0 e1 −D∣
How to find those determinants?



  

Möller-Trumbore Ray Triangle

● Scalar triple product: a⋅(b×c)=∣a b c∣



  

Möller-Trumbore Ray Triangle

● Scalar triple product: a⋅(b×c)=∣a b c∣

u=
b⋅(e1×−D)

e0⋅(e1×−D)
v=

e0⋅(b×−D)

e0⋅(e1×−D)
t=

e0⋅(e1×b)

e0⋅(e1×−D)



  

Möller-Trumbore Ray Triangle

● Scalar triple product:

● Anticommutativity of the cross product:

a⋅(b×c)=∣a b c∣

u=
b⋅(e1×−D)

e0⋅(e1×−D)
v=

e0⋅(b×−D)

e0⋅(e1×−D)
t=

e0⋅(e1×b)

e0⋅(e1×−D)

u=
b⋅(D×e1)

e0⋅(D×e1)
v=

e0⋅(D×b)

e0⋅(D×e1)
t=
e0⋅(e1×b)

e0⋅(D×e1)



  

Möller-Trumbore Ray Triangle

● Scalar triple product:

● Anticommutativity of the cross product:

● Circular shift invariance of scalar triple product

a⋅(b×c)=∣a b c∣

u=
b⋅(e1×−D)

e0⋅(e1×−D)
v=

e0⋅(b×−D)

e0⋅(e1×−D)
t=

e0⋅(e1×b)

e0⋅(e1×−D)

u=
b⋅(D×e1)

e0⋅(D×e1)
v=

e0⋅(D×b)

e0⋅(D×e1)
t=
e0⋅(e1×b)

e0⋅(D×e1)

v=
D⋅(b×e0)

e0⋅(D×e1)
t=
e1⋅(b×e0)

e0⋅(D×e1)



  

Möller-Trumbore Ray Triangle

● Scalar triple product:

● Anticommutativity of the cross product:

● Circular shift invariance of scalar triple product

a⋅(b×c)=∣a b c∣

u=
b⋅(e1×−D)

e0⋅(e1×−D)
v=

e0⋅(b×−D)

e0⋅(e1×−D)
t=

e0⋅(e1×b)

e0⋅(e1×−D)

u=
b⋅(D×e1)

e0⋅(D×e1)
v=

e0⋅(D×b)

e0⋅(D×e1)
t=
e0⋅(e1×b)

e0⋅(D×e1)

v=
D⋅(b×e0)

e0⋅(D×e1)
t=
e1⋅(b×e0)

e0⋅(D×e1)Think about the matrix 
elementary row operations...



  

Möller-Trumbore Ray Triangle

● We can calculate only two cross products

u=
b⋅(D×e1)

e0⋅(D×e1)
v=

D⋅(b×e0)

e0⋅(D×e1)
t=
e1⋅(b×e0)

e0⋅(D×e1)



  

Möller-Trumbore Ray Triangle

● We can calculate only two cross products

u=
b⋅(D×e1)

e0⋅(D×e1)
v=

D⋅(b×e0)

e0⋅(D×e1)
t=
e1⋅(b×e0)

e0⋅(D×e1)

u=
b⋅P
P̂

v=
D⋅Q
P̂

t=
e1⋅Q

P̂

Q=(b×e0)

P=(D×e1)

P̂=e0⋅P



  

Möller-Trumbore Ray Triangle

● We can calculate only two cross products

● What happens if: 

u=
b⋅(D×e1)

e0⋅(D×e1)
v=

D⋅(b×e0)

e0⋅(D×e1)
t=
e1⋅(b×e0)

e0⋅(D×e1)

u=
b⋅P
P̂

v=
D⋅Q
P̂

t=
e1⋅Q

P̂

Q=(b×e0)

P=(D×e1)

P̂=e0⋅(D×e1)∼0

P̂=e0⋅(D×e1)<0 P̂=e0⋅(D×e1)>0

Circular shift can help to visualize this better...

P̂=e0⋅P



  

Möller-Trumbore Ray Triangle

● Can it happen, and what does it mean?

u<0 u>1 v<0 v>1 u+v>1 t≤0



  

Ray Trace Rendering

● We can use ray tracing to model the light paths
(in reverse)



  

Ray Trace Rendering

● What is the origin of a ray?
● What about the direction?



  

Ray Trace Rendering

● Accurate way to model reflective / refractive 
surfaces.



  

Ray Trace Rendering

● Accurate way to model reflective / refractive 
surfaces.

● Quite expensive, we need to test each ray 
against our geometry.

800⋅600⋅3⋅700=1008000000

screen width, height bounces triangles (quite few)

number of rays
That is over a billion 
intersection tests each frame!



  

Space Partitioning

● We can keep our objects in a structure, that 
lessens the number of intersections we need to 
test.

● Imagine in 2D a ray and a some line segments.

Any ideas, how to lessen 
the number of tests?



  

First Idea: Axis-Aligned Grid

● We can limit the number of grid cells to check, 
by accounting for the ray's direction.



  

First Idea: Axis-Aligned Grid
● Most of the cells are empty... 



  

Second Idea: Quadtree / Octree
● Make the cells divide, if there are more objects 

inside them. Start with one cell for the entire 
scene.



  

Third Idea: K-D Tree
● Split according to the geometry. Traditionally by 

the median value.

No node will 
be empty.



  

Third Idea: K-D Tree
● Split with a rule to maximize the occurance of 

empty nodes.

Why is this 
good?



  

Fourth Idea: BSP Tree
● Binary Space Partitioning divides the space 

with existing polygons.

Not that useful for 
ray tracing.

Works well for 
geometry ordering 
(front to back).



  

Fifth Idea: BVH
● Bounding Volume Hierarchy – create a tree of 

bounding polygons around objects.

Bounding objects 
also useful for 
collision detection.

Axis-aligned 
bounding boxes.

Bounding spheres.



  

Space Partitioning

● Possible to combine different methods.
● Create structures, based on your own rules.
● Some better for dynamic, some for static scene.
● Ray Tracing Acceleration Data Structures:

http://www.cse.iitb.ac.in/~paragc/teaching/2009/cs
475/notes/accelerating_raytracing_sumair.pdf

● Octree vs BVH:
http://thomasdiewald.com/blog/?p=1488 

http://www.cse.iitb.ac.in/~paragc/teaching/2009/cs475/notes/accelerating_raytracing_sumair.pdf
http://www.cse.iitb.ac.in/~paragc/teaching/2009/cs475/notes/accelerating_raytracing_sumair.pdf
http://thomasdiewald.com/blog/?p=1488


  

What did you found out today?

What more would you like to know?

Next time 

Global Illumination


	Slaid 1
	Slaid 2
	Slaid 3
	Slaid 4
	Slaid 5
	Slaid 6
	Slaid 7
	Slaid 8
	Slaid 9
	Slaid 10
	Slaid 11
	Slaid 12
	Slaid 13
	Slaid 14
	Slaid 15
	Slaid 16
	Slaid 17
	Slaid 18
	Slaid 19
	Slaid 20
	Slaid 21
	Slaid 22
	Slaid 23
	Slaid 24
	Slaid 25
	Slaid 26
	Slaid 27
	Slaid 28
	Slaid 29
	Slaid 30
	Slaid 31
	Slaid 32
	Slaid 33
	Slaid 34
	Slaid 35
	Slaid 36
	Slaid 37
	Slaid 38
	Slaid 39
	Slaid 40
	Slaid 41
	Slaid 42
	Slaid 43
	Slaid 44
	Slaid 45
	Slaid 46
	Slaid 47
	Slaid 48
	Slaid 49
	Slaid 50
	Slaid 51
	Slaid 52
	Slaid 53
	Slaid 54
	Slaid 55

