Computer Graphics
MTAT.03.015

Raimond Tunnel

Study IT in .ee
The Road So Far...

```javascript
if (d < 0.1) {
    stop moving up
}
if (c < 0.1) {
    stop moving left
}
if (b < 0.1) {
    stop moving down
}
if (a < 0.1) {
    stop moving right
}
```
Bounding Box

- With bounding boxes you can detect collisions between boxes.
Bounding Box

- With bounding boxes you can detect collisions between boxes.
- Our hangar just happens to be a box.
Bounding Box

• With bounding boxes you can detect collisions between boxes.

• Our hangar just happens to be a box.

• The chopper is not a box, but the collision approximation with a bounding box seems ok.
Bounding Box

- With bounding boxes you can detect collisions between boxes.
- Our hangar just happens to be a box.
- The chopper is not a box, but the collision approximation with a bounding box seems ok.
- The bounding box is *axis-aligned*.
Bounding Box

- With bounding boxes you can detect collisions between boxes.
- Our hangar just happens to be a box.
- The chopper is not a box, but the collision approximation with a bounding box seems ok.
- The bounding box is axis-aligned.
- Some of you wrote 4 if-statements. That is a (kind of) bounding box collision detection for those specific boxes (around chopper, the hangar).
Collision Detection

- What if the hangar walls were rotated? Can not assume that all walls are always axis-aligned..
Collision Detection

- What if the hangar walls were rotated? Can not assume that all walls are always axis-aligned.
- What if the chopper was rotated?
Collision Detection

- What if the hangar walls were rotated? Can not assume that all walls are always axis-aligned.
- What if the chopper rotated?
- The rotating blades actually would need a cylinder to minimally bound them.
Collision Detection

- What if the hangar walls were rotated? Can not assume that all walls are always axis-aligned.
- What if the chopper rotated?
- The rotating blades actually would need a cylinder to minimally bound them.
- Bounding objects provide a fast and rough approximation.
Ray Casting

- Cast rays out of some vertices, following the vertex normal.
Ray Casting

- Detect the first hit of ray and scene geometry.
Ray Casting

- Detect the first hit of ray and scene geometry.
- Measure the distance from the vertex to the hit.
Ray Casting

- Detect the first hit of ray and scene geometry.
- Measure the distance from the vertex to the hit.
- If the distance is too small, change the chopper's position, speed, acceleration, in order to avoid a collision.
Ray Casting

- Detect the first hit of ray and scene geometry.
- Measure the distance from the vertex to the hit.
- If the distance is too small, change the chopper's position, speed, acceleration, in order to avoid a collision.

Intersection testing:
- Intersection testing between a variety of objects: http://www.realtimerendering.com/intersections.html
Möller-Trumbore Ray Triangle

\[\text{Ray}(t) = \text{Start} + t \cdot \text{Direction} \]
Möller-Trumbore Ray Triangle

- $\text{Ray}(t) = \text{Start} + t \cdot \text{Direction}$
- $\text{Triangle}(u, v) = v_0 + u \cdot e_0 + v \cdot e_1$
Möller-Trumbore Ray Triangle

- $\text{Ray}(t) = \text{Start} + t \cdot \text{Direction}$
- $\text{Triangle}(u, v) = \mathbf{v}_0 + u \cdot \mathbf{e}_0 + v \cdot \mathbf{e}_1$
- The u and v are actually Barycentric coordinates of vertices \mathbf{v}_1 and \mathbf{v}_2.
Möller-Trumbore Ray Triangle

• $\text{Ray}(t) = \text{Start} + t \cdot \text{Direction}$
• $\text{Triangle}(u, v) = v_0 + u \cdot e_0 + v \cdot e_1$
• The u and v are actually Barycentric coordinates of vertices v_1 and v_2.
• What is the coordinate of v_0?
Möller-Trumbore Ray Triangle

- \(Ray(t) = Start + t \cdot Direction \)
- \(Triangle(u, v) = v_0 + u \cdot e_0 + v \cdot e_1 \)

- The \(u \) and \(v \) are actually Barycentric coordinates of vertices \(v_1 \) and \(v_2 \).
- What is the coordinate of \(v_0 \)?
- Goal is to find a solution to the following equation:

\[
Ray(t) = Triangle(u, v)
\]
Möller-Trumbore Ray Triangle

- \(Ray(t) = Start + t \cdot Direction \)
- \(Triangle(u, v) = v_0 + u \cdot e_0 + v \cdot e_1 \)
- The \(u \) and \(v \) are actually Barycentric coordinates of vertices \(v_1 \) and \(v_2 \).
- What is the coordinate of \(v_0 \)?
- Goal is to find a solution to the following equation:

\[
Ray(t) = Start + t \cdot Direction = v_0 + u \cdot e_0 + v \cdot e_1 = Triangle(u, v)
\]
Möller-Trumbore Ray Triangle

- Let us call S the *Start* and D the *Direction*.
Möller-Trumbore Ray Triangle

• Let us call S the *Start* and D the *Direction*.
• We can rearrange the terms to see better.

\[S + t \cdot D = (1 - u - v) v_0 + u \cdot v_1 + v \cdot v_2 \]
Möller-Trumbore Ray Triangle

• Let us call S the \textit{Start} and D the \textit{Direction}.

• We can rearrange the terms to see better.

\[S + t \cdot D = (1-u-v)v_0 + u \cdot v_1 + v \cdot v_2 \]

\[S - v_0 = u \cdot (v_1 - v_0) + v \cdot (v_2 - v_0) - t \cdot D \]

Moving the constant values to one side... Parameteres to the other side...
Möller-Trumbore Ray Triangle

• Let us call S the *Start* and D the *Direction*.
• We can rearrange the terms to see better.

\[
S + t \cdot D = (1 - u - v)v_0 + u \cdot v_1 + v \cdot v_2
\]

\[
S - v_0 = u \cdot (v_1 - v_0) + v \cdot (v_2 - v_0) - t \cdot D
\]

Moving the constant values to one side... Parameteres to the other side...

Notice the triangle basis vectors again...
Möller-Trumbore Ray Triangle

- Let us call S the *Start* and D the *Direction*.
- We can rearrange the terms to see better.

\[S + t \cdot D = (1 - u - v)v_0 + u \cdot v_1 + v \cdot v_2 \]
\[S - v_0 = u \cdot (v_1 - v_0) + v \cdot (v_2 - v_0) - t \cdot D \]

\[
\begin{pmatrix}
(v_1 - v_0) & (v_2 - v_0) & -D
\end{pmatrix}
\begin{pmatrix}
u \\
v \\
t
\end{pmatrix}
= S - v_0
\]

Converting into vector form
Möller-Trumbore Ray Triangle

• Let us call S the Start and D the Direction.
• We can rearrange the terms to see better.

$$S + t \cdot D = (1 - u - v) v_0 + u \cdot v_1 + v \cdot v_2$$

$$S - v_0 = u \cdot (v_1 - v_0) + v \cdot (v_2 - v_0) - t \cdot D$$

$$\begin{pmatrix} (v_1 - v_0) & (v_2 - v_0) & -D \end{pmatrix} \begin{pmatrix} u \\ v \\ t \end{pmatrix} = S - v_0$$

• We are looking for the unknown vector $\begin{pmatrix} u \\ v \\ t \end{pmatrix}$.
Möller-Trumbore Ray Triangle

- We are in 3D, so we have 3 equations for each dimension.

\[
\begin{pmatrix}
e_0 & e_1 & -D
\end{pmatrix}
\begin{pmatrix}
u \\
v \\
t
\end{pmatrix} = S - v_0
\]

Using the basis vectors for simpler writeup
Möller-Trumbore Ray Triangle

- We are in 3D, so we have 3 equations for each dimension.

\[
\begin{pmatrix}
e_0 & e_1 & -D
\end{pmatrix} \begin{pmatrix}
u \\ v \\ t
\end{pmatrix} = S - v_0
\]

- Cramer's rule

\[
x = \frac{A_x}{|A|} \quad y = \frac{A_y}{|A|} \quad z = \frac{A_z}{|A|}
\]

\[
a_{0,0} \cdot x + a_{0,1} \cdot y + a_{0,2} \cdot z = b_0 \\
a_{1,0} \cdot x + a_{1,1} \cdot y + a_{2,2} \cdot z = b_1 \\
a_{2,0} \cdot x + a_{2,1} \cdot y + a_{2,2} \cdot z = b_2
\]

- \(A_x \) - first column replaced by \(b \)
- \(A_y \) - second column replaced by \(b \)
- \(A_z \) - third column replaced by \(b \)
Möller-Trumbore Ray Triangle

- With Cramer's rule

\[
\begin{pmatrix} e_0 & e_1 & -D \\ \end{pmatrix} \begin{pmatrix} u \\ v \\ t \end{pmatrix} = S - v_0
\]

\[
\begin{vmatrix} S_x - v_{0x} & e_{1x} & -D_x \\ S_y - v_{0y} & e_{1y} & -D_y \\ S_z - v_{0z} & e_{1z} & -D_z \end{vmatrix}
\]

\[
\begin{vmatrix} e_{0x} & e_{1x} & -D_x \\ e_{0y} & e_{1y} & -D_y \\ e_{0z} & e_{1z} & -D_z \end{vmatrix}
\]

etc
Möller-Trumbore Ray Triangle

- With Cramer's rule

\[
\begin{pmatrix}
e_0 & e_1 & -D
\end{pmatrix} \begin{pmatrix}
u \\
v \\
t
\end{pmatrix} = \begin{pmatrix} S - v_0 \end{pmatrix}
\]

- Denote columns

\[
\begin{align*}
b &= S - v_0 \\
u &= \begin{vmatrix} b & e_1 & -D \\ e_0 & e_1 & -D \end{vmatrix} \\
v &= \begin{vmatrix} e_0 & b & -D \\ e_0 & e_1 & -D \end{vmatrix} \\
t &= \begin{vmatrix} e_0 & e_1 & b \\ e_0 & e_1 & -D \end{vmatrix}
\end{align*}
\]

How to find those determinants?
Möller-Trumbore Ray Triangle

- Scalar triple product: \(a \cdot (b \times c) = \begin{vmatrix} a & b & c \end{vmatrix} \)
Möller-Trumbore Ray Triangle

- Scalar triple product: \(a \cdot (b \times c) = \begin{vmatrix} a & b & c \end{vmatrix} \)

\[
\begin{aligned}
u &= \frac{b \cdot (e_1 \times -D)}{e_0 \cdot (e_1 \times -D)} \\
v &= \frac{e_0 \cdot (b \times -D)}{e_0 \cdot (e_1 \times -D)} \\
t &= \frac{e_0 \cdot (e_1 \times b)}{e_0 \cdot (e_1 \times -D)}
\end{aligned}
\]
Möller-Trumbore Ray Triangle

• Scalar triple product: \(a \cdot (b \times c) = \begin{vmatrix} a & b & c \end{vmatrix} \)

\[
\begin{align*}
u &= \frac{b \cdot (e_1 \times -D)}{e_0 \cdot (e_1 \times -D)} \\
v &= \frac{e_0 \cdot (b \times -D)}{e_0 \cdot (e_1 \times -D)} \\
t &= \frac{e_0 \cdot (e_1 \times b)}{e_0 \cdot (e_1 \times -D)}
\end{align*}
\]

• Anticommutativity of the cross product:

\[
\begin{align*}
u &= \frac{b \cdot (D \times e_1)}{e_0 \cdot (D \times e_1)} \\
v &= \frac{e_0 \cdot (D \times b)}{e_0 \cdot (D \times e_1)} \\
t &= \frac{e_0 \cdot (e_1 \times b)}{e_0 \cdot (D \times e_1)}
\end{align*}
\]
Möller-Trumbore Ray Triangle

- Scalar triple product: \(a \cdot (b \times c) = |a \ b \ c| \)

\[
\begin{align*}
 u &= \frac{b \cdot (e_1 \times -D)}{e_0 \cdot (e_1 \times -D)} \\
 v &= \frac{e_0 \cdot (b \times -D)}{e_0 \cdot (e_1 \times -D)} \\
 t &= \frac{e_0 \cdot (e_1 \times b)}{e_0 \cdot (e_1 \times -D)}
\end{align*}
\]

- Anticommutativity of the cross product:

\[
\begin{align*}
 u &= \frac{b \cdot (D \times e_1)}{e_0 \cdot (D \times e_1)} \\
 v &= \frac{e_0 \cdot (D \times b)}{e_0 \cdot (D \times e_1)} \\
 t &= \frac{e_0 \cdot (e_1 \times b)}{e_0 \cdot (D \times e_1)}
\end{align*}
\]

- Circular shift invariance of scalar triple product

\[
\begin{align*}
 v &= \frac{D \cdot (b \times e_0)}{e_0 \cdot (D \times e_1)} \\
 t &= \frac{e_1 \cdot (b \times e_0)}{e_0 \cdot (D \times e_1)}
\end{align*}
\]
Möller-Trumbore Ray Triangle

- Scalar triple product: \[a \cdot (b \times c) = |a \ b \ c| \]
 \[
 u = \frac{b \cdot (e_1 \times -D)}{e_0 \cdot (e_1 \times -D)} \quad v = \frac{e_0 \cdot (b \times -D)}{e_0 \cdot (e_1 \times -D)} \quad t = \frac{e_0 \cdot (e_1 \times b)}{e_0 \cdot (e_1 \times -D)}
 \]

- Anticommutativity of the cross product:
 \[
 u = \frac{b \cdot (D \times e_1)}{e_0 \cdot (D \times e_1)} \quad v = \frac{e_0 \cdot (D \times b)}{e_0 \cdot (D \times e_1)} \quad t = \frac{e_0 \cdot (e_1 \times b)}{e_0 \cdot (D \times e_1)}
 \]

- Circular shift invariance of scalar triple product
 \[
 v = \frac{D \cdot (b \times e_0)}{e_0 \cdot (D \times e_1)} \quad t = \frac{e_1 \cdot (b \times e_0)}{e_0 \cdot (D \times e_1)}
 \]

Think about the matrix elementary row operations...
Möller-Trumbore Ray Triangle

- We can calculate only two cross products

\[u = \frac{b \cdot (D \times e_1)}{e_0 \cdot (D \times e_1)} \quad v = \frac{D \cdot (b \times e_0)}{e_0 \cdot (D \times e_1)} \quad t = \frac{e_1 \cdot (b \times e_0)}{e_0 \cdot (D \times e_1)} \]
Möller-Trumbore Ray Triangle

- We can calculate only two cross products

\[
\begin{align*}
 u &= \frac{b \cdot (D \times e_1)}{e_0 \cdot (D \times e_1)} \\
 v &= \frac{D \cdot (b \times e_0)}{e_0 \cdot (D \times e_1)} \\
 t &= \frac{e_1 \cdot (b \times e_0)}{e_0 \cdot (D \times e_1)} \\
 u &= \frac{b \cdot P}{\hat{P}} \\
 v &= \frac{D \cdot Q}{\hat{P}} \\
 t &= \frac{e_1 \cdot Q}{\hat{P}} \\
 Q &= (b \times e_0) \\
 P &= (D \times e_1) \\
 \hat{P} &= e_0 \cdot P
\end{align*}
\]
Möller-Trumbore Ray Triangle

- We can calculate only two cross products

\[
\begin{align*}
u &= \frac{b \cdot (D \times e_1)}{e_0 \cdot (D \times e_1)} \\
v &= \frac{D \cdot (b \times e_0)}{e_0 \cdot (D \times e_1)} \\
t &= \frac{e_1 \cdot (b \times e_0)}{e_0 \cdot (D \times e_1)}
\end{align*}
\]

\[
\begin{align*}
u &= \frac{b \cdot P}{\hat{P}} \\
v &= \frac{D \cdot Q}{\hat{P}} \\
t &= \frac{e_1 \cdot Q}{\hat{P}} \\
Q &= (b \times e_0) \\
P &= (D \times e_1) \\
\hat{P} &= e_0 \cdot P
\end{align*}
\]

- What happens if: \(\hat{P} = e_0 \cdot (D \times e_1) \sim 0 \)

\[
\begin{align*}
\hat{P} &= e_0 \cdot (D \times e_1) < 0 \\
\hat{P} &= e_0 \cdot (D \times e_1) > 0
\end{align*}
\]

Circular shift can help to visualize this better...
Möller-Trumbore Ray Triangle

• Can it happen, and what does it mean?

\[u < 0 \quad u > 1 \quad v < 0 \quad v > 1 \quad u + v > 1 \quad t \leq 0 \]
Ray Trace Rendering

- We can use ray tracing to model the light paths (in reverse)
Ray Trace Rendering

- What is the origin of a ray?
- What about the direction?
Ray Trace Rendering

- Accurate way to model reflective / refractive surfaces.
Ray Trace Rendering

- Accurate way to model reflective / refractive surfaces.
- Quite expensive, we need to test each ray against our geometry.

\[800 \cdot 600 \cdot 3 \cdot 700 = 10080000000 \]

That is over a billion intersection tests each frame!
Space Partitioning

- We can keep our objects in a structure, that lessens the number of intersections we need to test.
- Imagine in 2D a ray and a some line segments.

Any ideas, how to lessen the number of tests?
First Idea: Axis-Aligned Grid

- We can limit the number of grid cells to check, by accounting for the ray's direction.
First Idea: Axis-Aligned Grid

- Most of the cells are empty...
Second Idea: Quadtree / Octree

- Make the cells divide, if there are more objects inside them. Start with one cell for the entire scene.
Third Idea: K-D Tree

- Split according to the geometry. Traditionally by the median value.

No node will be empty.
Third Idea: K-D Tree

- Split with a rule to maximize the occurrence of empty nodes.

Why is this good?
Fourth Idea: BSP Tree

- Binary Space Partitioning divides the space with existing polygons.

Not that useful for ray tracing.

Works well for geometry ordering (front to back).
Fifth Idea: BVH

- Bounding Volume Hierarchy – create a tree of bounding polygons around objects.

- Bounding objects also useful for collision detection.

- Axis-aligned bounding boxes.

- Bounding spheres.
Space Partitioning

- Possible to combine different methods.
- Create structures, based on your own rules.
- Some better for dynamic, some for static scene.
- *Octree vs BVH:* http://thomasdiewald.com/blog/?p=1488
What did you found out today?

What more would you like to know?

Next time

Global Illumination