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The Road So Far...
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Bounding Box

● With bounding boxes you can detect collisions 
between boxes.

● Our hangar just happens to be a box.
● The chopper is not a box, but the collision 

approximation with a bounding box seems ok.
● The bounding box is axis-aligned.
● Some of you wrote 4 if-statements. 

That is a (kind of) bounding box collision 
detection for those specific boxes (around 
chopper, the hangar).



  

Collision Detection
● What if the hangar walls were rotated? Can not 

assume that all walls are always axis-aligned..
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Collision Detection
● What if the hangar walls were rotated? Can not 

assume that all walls are always axis-aligned.
● What if the chopper rotated?
● The rotating blades actually would need a 

cylinder to minimally bound them.
● Bounding objects provide a fast and rough 

approximation.



  

Ray Casting
● Cast rays out of some vertices, following the 

vertex normal.



  

Ray Casting

● Detect the first hit of ray and scene geometry.
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Ray Casting

● Detect the first hit of ray and scene geometry.
● Measure the distance from the vertex to the hit.
● If the distance is too small, change the 

chopper's position, speed, acceleation, in order 
to avoid a collision.

● Intersection testing:
● Intersection testing between a variety of objects:

http://www.realtimerendering.com/intersections.html 

http://www.realtimerendering.com/intersections.html


  

Möller-Trumbore Ray Triangle

Ray(t)=Start+t⋅Direction
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●

● The    and    are actually 
Barycentric coordinates of 
vertices     and    .
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Ray (t)=Start+t⋅Direction

Triangle(u , v)=v0+u⋅e0+v⋅e1

u v

v1 v2

v0



  

Möller-Trumbore Ray Triangle

●

●

● The    and    are actually 
Barycentric coordinates of 
vertices     and    .

● What is the coordinate of     ?
● Goal is to find a solution to 

the following equation:

Ray (t)=Start+t⋅Direction

Triangle(u , v)=v0+u⋅e0+v⋅e1

u v

v1 v2

Ray (t)=Triangle (u , v)

v0



  

Möller-Trumbore Ray Triangle

●

●

● The    and    are actually 
Barycentric coordinates of 
vertices     and    .

● What is the coordinate of     ?
● Goal is to find a solution to 

the following equation:

Ray(t)=Start+t⋅Direction

Triangle(u , v)=v0+u⋅e0+v⋅e1

u v

v1 v2

Ray (t)=Start+t⋅Direction=v0+u⋅e0+v⋅e1=Triangle (u , v)

v0
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Parameteres to the 
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● Let us call     the          and     the                .
● We can rearrange the terms to see better.

S+t⋅D=(1−u−v)v0+u⋅v1+v⋅v2

S Start D Direction

S−v0=u⋅(v1−v0)+v⋅(v2−v0)−t⋅D

Moving the constant 
values to one side...

Parameteres to the 
other side...

Notice the tria
ngle 

basis 
vectors a

gain...



  

Möller-Trumbore Ray Triangle

● Let us call     the          and     the                .
● We can rearrange the terms to see better.

S+t⋅D=(1−u−v)v0+u⋅v1+v⋅v2

S Start D Direction

S−v0=u⋅(v1−v0)+v⋅(v2−v0)−t⋅D

((v1−v0) (v2−v0) −D )⋅(
u
v
t )=S−v0

Converting into 
vector form



  

Möller-Trumbore Ray Triangle

● Let us call     the          and     the                .
● We can rearrange the terms to see better.

S+t⋅D=(1−u−v)v0+u⋅v1+v⋅v2

S Start D Direction

S−v0=u⋅(v1−v0)+v⋅(v2−v0)−t⋅D

((v1−v0) (v2−v0) −D )⋅(
u
v
t )=S−v0

● We are looking for the unknown vector (
u
v
t )



  

Möller-Trumbore Ray Triangle

● We are in 3D, so we have 3 equations for each 
dimension.

(e0 e1 −D)⋅(
u
v
t )=S−v0

Using the basis vectors 
for simpler writeup



  

Möller-Trumbore Ray Triangle

● We are in 3D, so we have 3 equations for each 
dimension.

● Cramer's rule

(e0 e1 −D)⋅(
u
v
t )=S−v0

a0,0⋅x+a0,1⋅y+a0,2⋅z=b0

a1,0⋅x+a1,1⋅y+a2,2⋅z=b1

a2,0⋅x+a2,1⋅y+a2,2⋅z=b2

x=
∣Ax∣
∣A∣

y=
∣Ay∣
∣A∣

z=
∣Az∣
∣A∣

Ax - first column replaced by b

Ay - second column replaced by b

Az - third column replaced by b



  

Möller-Trumbore Ray Triangle

● With Cramer's rule

(e0 e1 −D)⋅(
u
v
t )=S−v0 u=

∣
S x−v0x e1x −D x

S y−v0y e1y −D y

S z−v0z e1z −D z
∣

∣
e0x e1x −D x

e0y e1y −D y

e0z e1z −D z
∣

etc



  

Möller-Trumbore Ray Triangle

● With Cramer's rule

● Denote columns

(e0 e1 −D)⋅(
u
v
t )=S−v0 u=

∣
S x−v0x e1x −D x

S y−v0y e1y −D y

S z−v0z e1z −D z
∣

∣
e0x e1x −D x

e0y e1y −D y

e0z e1z −D z
∣

u=
∣b e1 −D∣
∣e0 e1 −D∣

b=S−v0

v=
∣e0 b −D∣
∣e0 e1 −D∣

t=
∣e0 e1 b∣

∣e0 e1 −D∣
How to find those determinants?



  

Möller-Trumbore Ray Triangle

● Scalar triple product: a⋅(b×c)=∣a b c∣



  

Möller-Trumbore Ray Triangle

● Scalar triple product: a⋅(b×c)=∣a b c∣

u=
b⋅(e1×−D)

e0⋅(e1×−D)
v=

e0⋅(b×−D)

e0⋅(e1×−D)
t=

e0⋅(e1×b)

e0⋅(e1×−D)



  

Möller-Trumbore Ray Triangle

● Scalar triple product:

● Anticommutativity of the cross product:

a⋅(b×c)=∣a b c∣

u=
b⋅(e1×−D)

e0⋅(e1×−D)
v=

e0⋅(b×−D)

e0⋅(e1×−D)
t=

e0⋅(e1×b)

e0⋅(e1×−D)

u=
b⋅(D×e1)

e0⋅(D×e1)
v=

e0⋅(D×b)

e0⋅(D×e1)
t=
e0⋅(e1×b)

e0⋅(D×e1)



  

Möller-Trumbore Ray Triangle

● Scalar triple product:

● Anticommutativity of the cross product:

● Circular shift invariance of scalar triple product

a⋅(b×c)=∣a b c∣

u=
b⋅(e1×−D)

e0⋅(e1×−D)
v=

e0⋅(b×−D)

e0⋅(e1×−D)
t=

e0⋅(e1×b)

e0⋅(e1×−D)

u=
b⋅(D×e1)

e0⋅(D×e1)
v=

e0⋅(D×b)

e0⋅(D×e1)
t=
e0⋅(e1×b)

e0⋅(D×e1)

v=
D⋅(b×e0)

e0⋅(D×e1)
t=
e1⋅(b×e0)

e0⋅(D×e1)



  

Möller-Trumbore Ray Triangle

● Scalar triple product:

● Anticommutativity of the cross product:

● Circular shift invariance of scalar triple product

a⋅(b×c)=∣a b c∣

u=
b⋅(e1×−D)

e0⋅(e1×−D)
v=

e0⋅(b×−D)

e0⋅(e1×−D)
t=

e0⋅(e1×b)

e0⋅(e1×−D)

u=
b⋅(D×e1)

e0⋅(D×e1)
v=

e0⋅(D×b)

e0⋅(D×e1)
t=
e0⋅(e1×b)

e0⋅(D×e1)

v=
D⋅(b×e0)

e0⋅(D×e1)
t=
e1⋅(b×e0)

e0⋅(D×e1)Think about the matrix 
elementary row operations...



  

Möller-Trumbore Ray Triangle

● We can calculate only two cross products

u=
b⋅(D×e1)

e0⋅(D×e1)
v=

D⋅(b×e0)

e0⋅(D×e1)
t=
e1⋅(b×e0)

e0⋅(D×e1)



  

Möller-Trumbore Ray Triangle

● We can calculate only two cross products

u=
b⋅(D×e1)

e0⋅(D×e1)
v=

D⋅(b×e0)

e0⋅(D×e1)
t=
e1⋅(b×e0)

e0⋅(D×e1)

u=
b⋅P
P̂

v=
D⋅Q
P̂

t=
e1⋅Q

P̂

Q=(b×e0)

P=(D×e1)

P̂=e0⋅P



  

Möller-Trumbore Ray Triangle

● We can calculate only two cross products

● What happens if: 

u=
b⋅(D×e1)

e0⋅(D×e1)
v=

D⋅(b×e0)

e0⋅(D×e1)
t=
e1⋅(b×e0)

e0⋅(D×e1)

u=
b⋅P
P̂

v=
D⋅Q
P̂

t=
e1⋅Q

P̂

Q=(b×e0)

P=(D×e1)

P̂=e0⋅(D×e1)∼0

P̂=e0⋅(D×e1)<0 P̂=e0⋅(D×e1)>0

Circular shift can help to visualize this better...

P̂=e0⋅P



  

Möller-Trumbore Ray Triangle

● Can it happen, and what does it mean?

u<0 u>1 v<0 v>1 u+v>1 t≤0



  

Ray Trace Rendering

● We can use ray tracing to model the light paths
(in reverse)



  

Ray Trace Rendering

● What is the origin of a ray?
● What about the direction?



  

Ray Trace Rendering

● Accurate way to model reflective / refractive 
surfaces.



  

Ray Trace Rendering

● Accurate way to model reflective / refractive 
surfaces.

● Quite expensive, we need to test each ray 
against our geometry.

800⋅600⋅3⋅700=1008000000

screen width, height bounces triangles (quite few)

number of rays
That is over a billion 
intersection tests each frame!



  

Space Partitioning

● We can keep our objects in a structure, that 
lessens the number of intersections we need to 
test.

● Imagine in 2D a ray and a some line segments.

Any ideas, how to lessen 
the number of tests?



  

First Idea: Axis-Aligned Grid

● We can limit the number of grid cells to check, 
by accounting for the ray's direction.



  

First Idea: Axis-Aligned Grid
● Most of the cells are empty... 



  

Second Idea: Quadtree / Octree
● Make the cells divide, if there are more objects 

inside them. Start with one cell for the entire 
scene.



  

Third Idea: K-D Tree
● Split according to the geometry. Traditionally by 

the median value.

No node will 
be empty.



  

Third Idea: K-D Tree
● Split with a rule to maximize the occurance of 

empty nodes.

Why is this 
good?



  

Fourth Idea: BSP Tree
● Binary Space Partitioning divides the space 

with existing polygons.

Not that useful for 
ray tracing.

Works well for 
geometry ordering 
(front to back).



  

Fifth Idea: BVH
● Bounding Volume Hierarchy – create a tree of 

bounding polygons around objects.

Bounding objects 
also useful for 
collision detection.

Axis-aligned 
bounding boxes.

Bounding spheres.



  

Space Partitioning

● Possible to combine different methods.
● Create structures, based on your own rules.
● Some better for dynamic, some for static scene.
● Ray Tracing Acceleration Data Structures:

http://www.cse.iitb.ac.in/~paragc/teaching/2009/cs
475/notes/accelerating_raytracing_sumair.pdf

● Octree vs BVH:
http://thomasdiewald.com/blog/?p=1488 

http://www.cse.iitb.ac.in/~paragc/teaching/2009/cs475/notes/accelerating_raytracing_sumair.pdf
http://www.cse.iitb.ac.in/~paragc/teaching/2009/cs475/notes/accelerating_raytracing_sumair.pdf
http://thomasdiewald.com/blog/?p=1488


  

What did you found out today?

What more would you like to know?

Next time 

Global Illumination
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