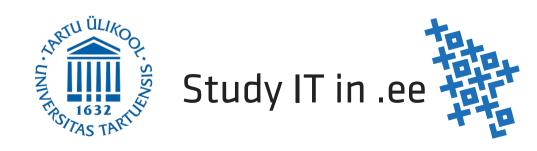
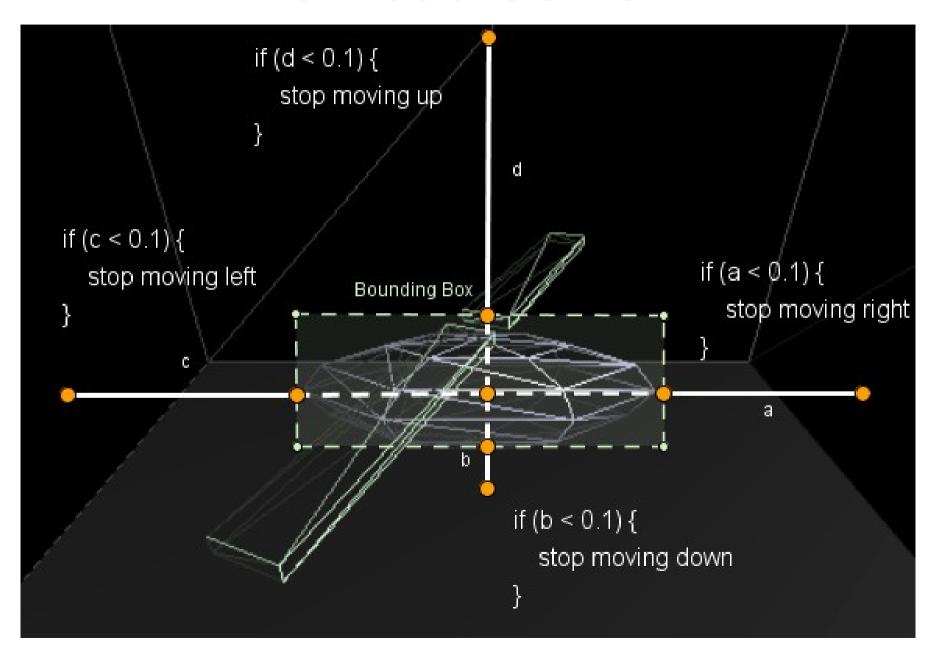
Computer Graphics MTAT.03.015

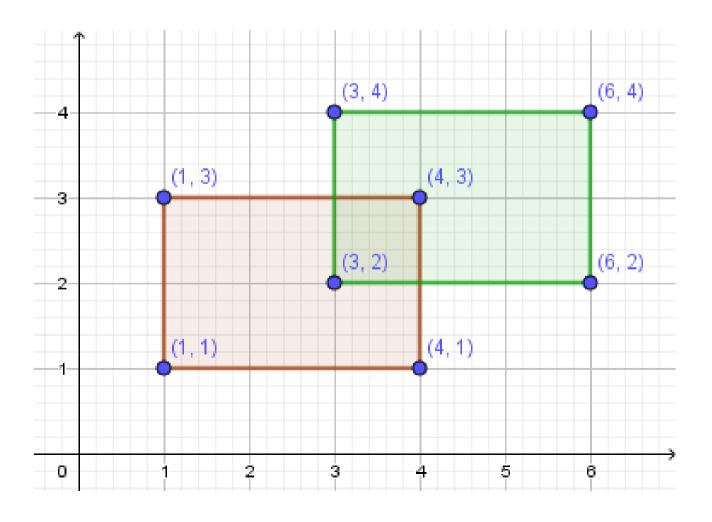
Raimond Tunnel



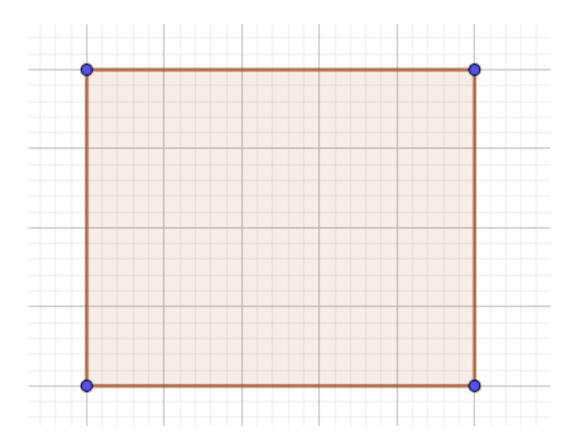
The Road So Far...



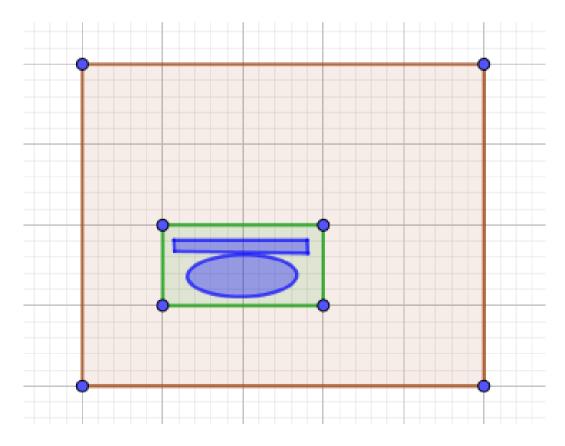
 With bounding boxes you can detect collisions between boxes.



- With bounding boxes you can detect collisions between boxes.
- Our hangar just happens to be a box.



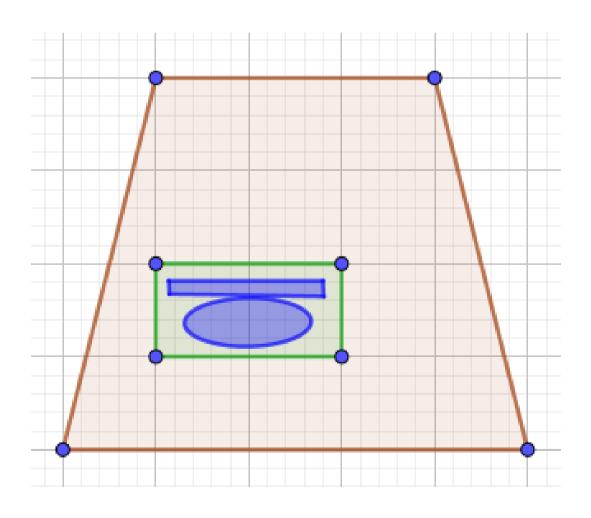
- With bounding boxes you can detect collisions between boxes.
- Our hangar just happens to be a box.
- The chopper is not a box, but the collision approximation with a bounding box seems ok.



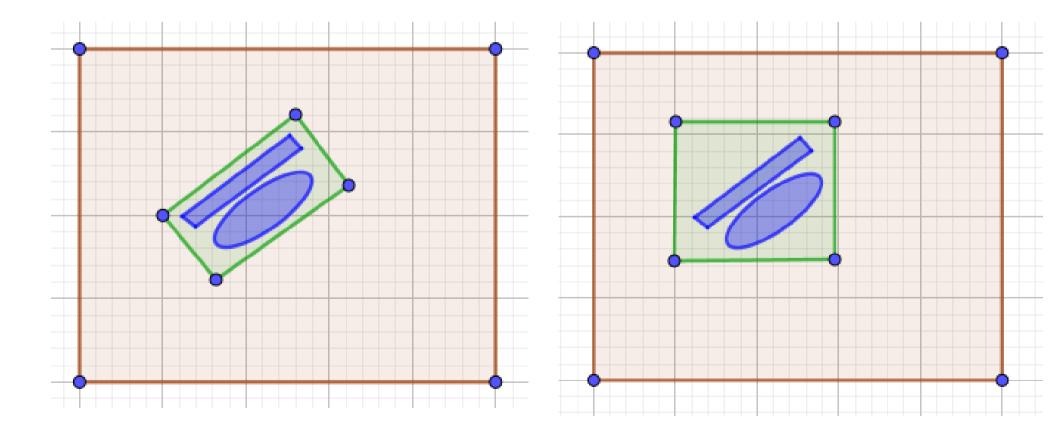
- With bounding boxes you can detect collisions between boxes.
- Our hangar just happens to be a box.
- The chopper is not a box, but the collision approximation with a bounding box seems ok.
- The bounding box is axis-aligned.

- With bounding boxes you can detect collisions between boxes.
- Our hangar just happens to be a box.
- The chopper is not a box, but the collision approximation with a bounding box seems ok.
- The bounding box is axis-aligned.
- Some of you wrote 4 if-statements.
 That is a (kind of) bounding box collision detection for those specific boxes (around chopper, the hangar).

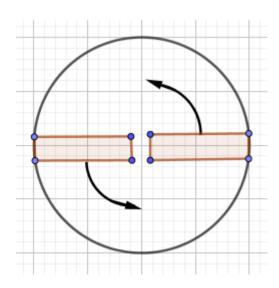
 What if the hangar walls were rotated? Can not assume that all walls are always axis-aligned..



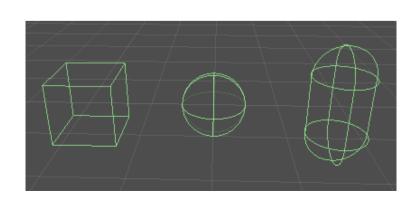
- What if the hangar walls were rotated? Can not assume that all walls are always axis-aligned.
- What if the chopper was rotated?

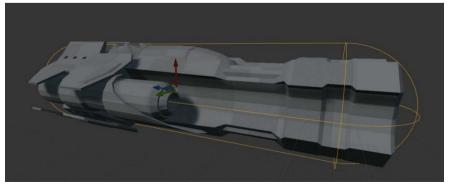


- What if the hangar walls were rotated? Can not assume that all walls are always axis-aligned.
- What if the chopper rotated?
- The rotating blades actually would need a cylinder to minimally bound them.

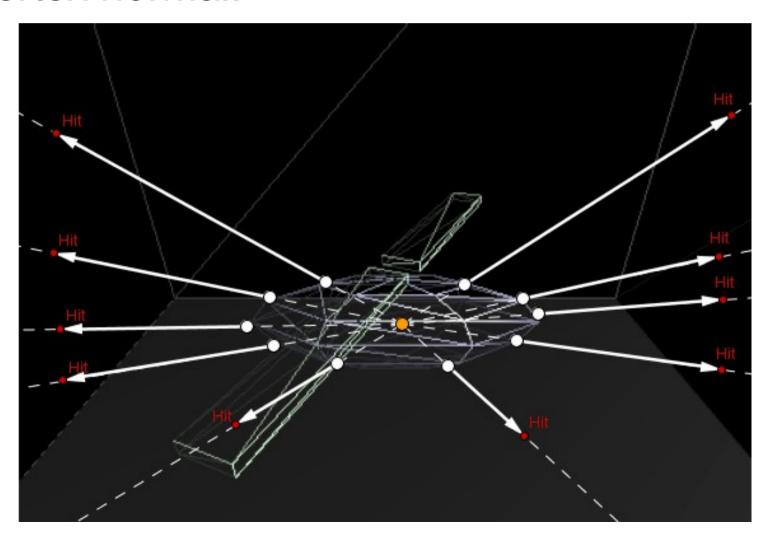


- What if the hangar walls were rotated? Can not assume that all walls are always axis-aligned.
- What if the chopper rotated?
- The rotating blades actually would need a cylinder to minimally bound them.
- Bounding objects provide a fast and rough approximation.

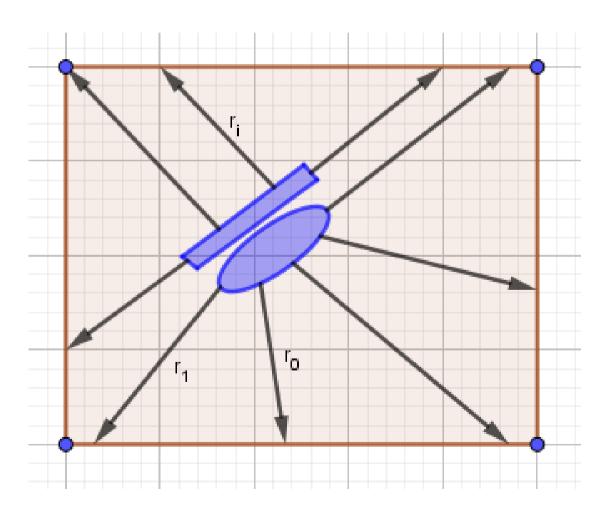




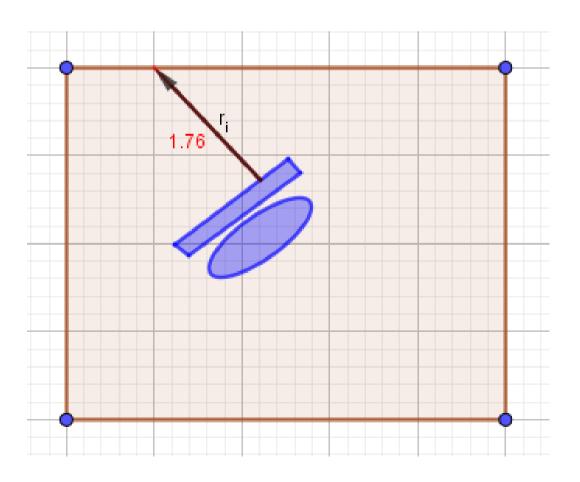
 Cast rays out of some vertices, following the vertex normal.



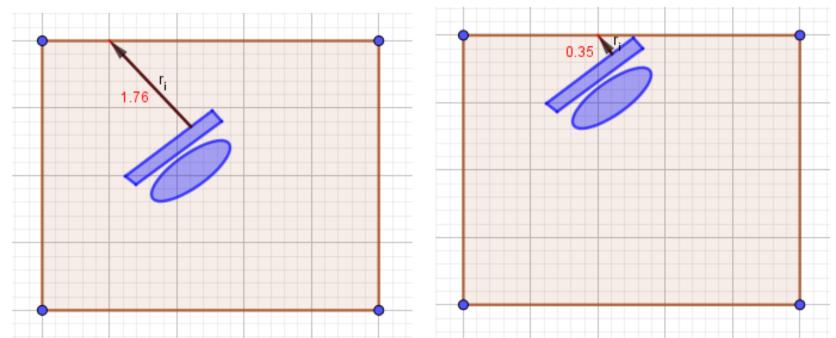
Detect the first hit of ray and scene geometry.



- Detect the first hit of ray and scene geometry.
- Measure the distance from the vertex to the hit.

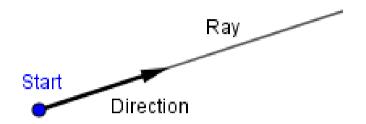


- Detect the first hit of ray and scene geometry.
- Measure the distance from the vertex to the hit.
- If the distance is too small, change the chopper's position, speed, acceleation, in order to avoid a collision.

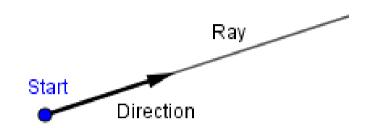


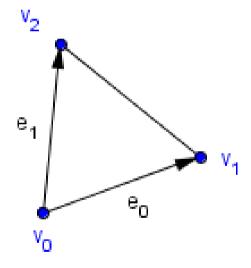
- Detect the first hit of ray and scene geometry.
- Measure the distance from the vertex to the hit.
- If the distance is too small, change the chopper's position, speed, acceleation, in order to avoid a collision.
- Intersection testing:
 - Intersection testing between a variety of objects: http://www.realtimerendering.com/intersections.html

$$Ray(t) = Start + t \cdot Direction$$

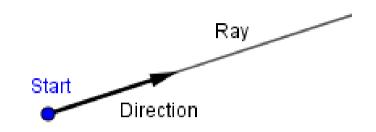


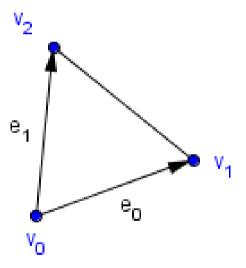
- $Ray(t) = Start + t \cdot Direction$
- $Triangle(u, v) = v_0 + u \cdot e_0 + v \cdot e_1$



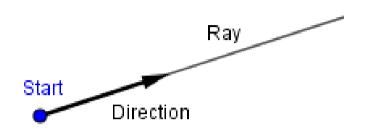


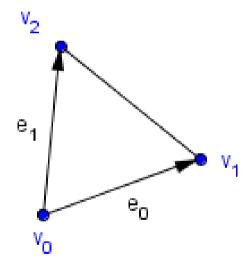
- $Ray(t) = Start + t \cdot Direction$
- $Triangle(u, v) = v_0 + u \cdot e_0 + v \cdot e_1$
- The u and v are actually Barycentric coordinates of vertices v₁ and v₂.





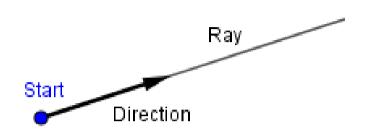
- $Ray(t) = Start + t \cdot Direction$
- $Triangle(u, v) = v_0 + u \cdot e_0 + v \cdot e_1$
- The u and v are actually Barycentric coordinates of vertices v₁ and v₂.
- What is the coordinate of v_0 ?

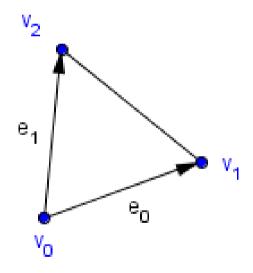




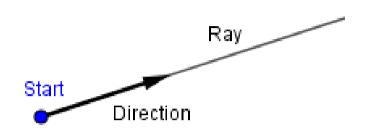
- $Ray(t) = Start + t \cdot Direction$
- $Triangle(u, v) = v_0 + u \cdot e_0 + v \cdot e_1$
- The u and v are actually Barycentric coordinates of vertices v₁ and v₂.
- What is the coordinate of v_0 ?
- Goal is to find a solution to the following equation:

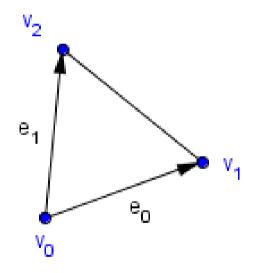
$$Ray(t) = Triangle(u, v)$$





- $Ray(t) = Start + t \cdot Direction$
- $Triangle(u, v) = v_0 + u \cdot e_0 + v \cdot e_1$
- The u and v are actually Barycentric coordinates of vertices v₁ and v₂.
- What is the coordinate of v_0 ?
- Goal is to find a solution to the following equation:





$$Ray(t) = Start + t \cdot Direction = v_0 + u \cdot e_0 + v \cdot e_1 = Triangle(u, v)$$

• Let us call S the Start and D the Direction.

- Let us call S the Start and D the Direction.
- We can rearrange the terms to see better.

$$S + t \cdot D = (1 - u - v)v_0 + u \cdot v_1 + v \cdot v_2$$

- Let us call S the Start and D the Direction.
- We can rearrange the terms to see better.

$$S+t\cdot D = (1-u-v)v_0 + u\cdot v_1 + v\cdot v_2$$

$$S-v_0 = u\cdot (v_1-v_0) + v\cdot (v_2-v_0) - t\cdot D$$

Moving the constant values to one side...

Parameteres to the other side...

- Let us call S the Start and D the Direction.
- We can rearrange the terms to see better.

$$S+t\cdot D = (1-u-v)v_0 + u\cdot v_1 + v\cdot v_2$$

$$S-v_0 = u\cdot (v_1-v_0) + v\cdot (v_2-v_0) - t\cdot D$$

$$\text{Notice the triangle basis vectors again...}$$

Moving the constant values to one side...

Parameteres to the other side...

- Let us call S the Start and D the Direction.
- We can rearrange the terms to see better.

$$S+t\cdot D = (1-u-v)v_0 + u\cdot v_1 + v\cdot v_2$$

$$S-v_0 = u\cdot (v_1-v_0) + v\cdot (v_2-v_0) - t\cdot D$$

$$\left(\left(v_1 - v_0 \right) \quad \left(v_2 - v_0 \right) \quad -D \right) \cdot \begin{pmatrix} u \\ v \\ t \end{pmatrix} = S - v_0$$
 Converting into vector form

- Let us call S the Start and D the Direction.
- We can rearrange the terms to see better.

$$S + t \cdot D = (1 - u - v)v_0 + u \cdot v_1 + v \cdot v_2$$

$$S - v_0 = u \cdot (v_1 - v_0) + v \cdot (v_2 - v_0) - t \cdot D$$

$$((v_1 - v_0) \quad (v_2 - v_0) \quad -D) \cdot \begin{pmatrix} u \\ v \\ t \end{pmatrix} = S - v_0$$
• We are looking for the unknown vector
$$\begin{pmatrix} u \\ v \\ t \end{pmatrix}$$

$$\begin{pmatrix} u \\ v \\ t \end{pmatrix}$$

 We are in 3D, so we have 3 equations for each dimension.

Using the basis vectors for simpler writeup

• We are in 3D, so we have 3 equations for each dimension.

$$\begin{pmatrix} e_0 & e_1 & -D \end{pmatrix} \cdot \begin{pmatrix} u \\ v \\ t \end{pmatrix} = S - v_0$$

• Cramer's rule

$$\begin{aligned} &a_{0,0} \cdot x + a_{0,1} \cdot y + a_{0,2} \cdot z = b_0 \\ &a_{1,0} \cdot x + a_{1,1} \cdot y + a_{2,2} \cdot z = b_1 \\ &a_{2,0} \cdot x + a_{2,1} \cdot y + a_{2,2} \cdot z = b_2 \end{aligned}$$

$$x = \frac{|A_x|}{|A|} \quad y = \frac{|A_y|}{|A|} \quad z = \frac{|A_z|}{|A|}$$

 A_x - first column replaced by b A_y - second column replaced by b A_z - third column replaced by b

With Cramer's rule

$$\begin{pmatrix} e_0 & e_1 & -D \end{pmatrix} \cdot \begin{pmatrix} u \\ v \\ t \end{pmatrix} = S - v_0$$

With Cramer's rule
$$(e_0 \quad e_1 \quad -D) \cdot \begin{pmatrix} u \\ v \\ t \end{pmatrix} = S - v_0$$

$$u = \frac{\begin{vmatrix} S_x - v_{0x} & e_{1x} & -D_x \\ S_y - v_{0y} & e_{1y} & -D_y \\ S_z - v_{0z} & e_{1z} & -D_z \end{vmatrix}}{\begin{vmatrix} e_{0x} & e_{1x} & -D_x \\ e_{0y} & e_{1y} & -D_y \\ e_{0z} & e_{1z} & -D_z \end{vmatrix}}$$

etc

With Cramer's rule

$$\begin{pmatrix} e_0 & e_1 & -D \end{pmatrix} \cdot \begin{pmatrix} u \\ v \\ t \end{pmatrix} = S - v_0$$

Denote columns

With Cramer's rule
$$(e_0 \quad e_1 \quad -D) \cdot \begin{pmatrix} u \\ v \\ t \end{pmatrix} = S - v_0$$

$$u = \frac{\begin{vmatrix} S_x - v_{0x} & e_{1x} & -D_x \\ S_y - v_{0y} & e_{1y} & -D_y \\ S_z - v_{0z} & e_{1z} & -D_z \end{vmatrix}}{\begin{vmatrix} e_{0x} & e_{1x} & -D_x \\ e_{0y} & e_{1y} & -D_y \\ e_{0z} & e_{1z} & -D_z \end{vmatrix}}$$
 Denote columns

$$b = S - v_0$$

$$u = \frac{\begin{vmatrix} b & e_1 & -D \end{vmatrix}}{\begin{vmatrix} e_0 & e_1 & -D \end{vmatrix}} \quad v = \frac{\begin{vmatrix} e_0 & b & -D \end{vmatrix}}{\begin{vmatrix} e_0 & e_1 & -D \end{vmatrix}} \quad t = \frac{\begin{vmatrix} e_0 & e_1 & b \end{vmatrix}}{\begin{vmatrix} e_0 & e_1 & -D \end{vmatrix}}$$

How to find those determinants?

• Scalar triple product: $a \cdot (b \times c) = \begin{vmatrix} a & b & c \end{vmatrix}$

• Scalar triple product: $a \cdot (b \times c) = |a \quad b \quad c|$

$$u = \frac{b \cdot (e_1 \times -D)}{e_0 \cdot (e_1 \times -D)} \qquad v = \frac{e_0 \cdot (b \times -D)}{e_0 \cdot (e_1 \times -D)} \qquad t = \frac{e_0 \cdot (e_1 \times b)}{e_0 \cdot (e_1 \times -D)}$$

• Scalar triple product: $a \cdot (b \times c) = \begin{vmatrix} a & b & c \end{vmatrix}$

$$u = \frac{b \cdot (e_1 \times -D)}{e_0 \cdot (e_1 \times -D)} \qquad v = \frac{e_0 \cdot (b \times -D)}{e_0 \cdot (e_1 \times -D)} \qquad t = \frac{e_0 \cdot (e_1 \times b)}{e_0 \cdot (e_1 \times -D)}$$

Anticommutativity of the cross product:

$$u = \frac{b \cdot (\mathbf{D} \times \mathbf{e}_1)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)} \qquad v = \frac{e_0 \cdot (\mathbf{D} \times b)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)} \qquad t = \frac{e_0 \cdot (e_1 \times b)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)}$$

• Scalar triple product: $a \cdot (b \times c) = \begin{vmatrix} a & b & c \end{vmatrix}$

$$u = \frac{b \cdot (e_1 \times -D)}{e_0 \cdot (e_1 \times -D)} \qquad v = \frac{e_0 \cdot (b \times -D)}{e_0 \cdot (e_1 \times -D)} \qquad t = \frac{e_0 \cdot (e_1 \times b)}{e_0 \cdot (e_1 \times -D)}$$

Anticommutativity of the cross product:

$$u = \frac{b \cdot (\mathbf{D} \times \mathbf{e}_1)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)} \qquad v = \frac{e_0 \cdot (\mathbf{D} \times b)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)} \qquad t = \frac{e_0 \cdot (e_1 \times b)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)}$$

Circular shift invariance of scalar triple product

$$v = \frac{D \cdot (\mathbf{b} \times \mathbf{e_0})}{e_0 \cdot (D \times e_1)} \qquad t = \frac{e_1 \cdot (\mathbf{b} \times \mathbf{e_0})}{e_0 \cdot (D \times e_1)}$$

• Scalar triple product: $a \cdot (b \times c) = \begin{vmatrix} a & b & c \end{vmatrix}$

$$u = \frac{b \cdot (e_1 \times -D)}{e_0 \cdot (e_1 \times -D)} \qquad v = \frac{e_0 \cdot (b \times -D)}{e_0 \cdot (e_1 \times -D)} \qquad t = \frac{e_0 \cdot (e_1 \times b)}{e_0 \cdot (e_1 \times -D)}$$

Anticommutativity of the cross product:

$$u = \frac{b \cdot (\mathbf{D} \times \mathbf{e}_1)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)} \qquad v = \frac{e_0 \cdot (\mathbf{D} \times \mathbf{b})}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)} \qquad t = \frac{e_0 \cdot (e_1 \times \mathbf{b})}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)}$$

Circular shift invariance of scalar triple product

$$v = \frac{D \cdot (\mathbf{b} \times \mathbf{e_0})}{e_0 \cdot (D \times e_1)} \qquad t = \frac{e_1 \cdot (\mathbf{b} \times \mathbf{e_0})}{e_0 \cdot (D \times e_1)}$$

Think about the matrix elementary row operations...

We can calculate only two cross products

$$u = \frac{b \cdot (\mathbf{D} \times \mathbf{e}_1)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)} \qquad v = \frac{D \cdot (\mathbf{b} \times \mathbf{e}_0)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)} \qquad t = \frac{e_1 \cdot (\mathbf{b} \times \mathbf{e}_0)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)}$$

We can calculate only two cross products

$$u = \frac{b \cdot (\mathbf{D} \times \mathbf{e}_1)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)} \qquad v = \frac{D \cdot (\mathbf{b} \times \mathbf{e}_0)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)} \qquad t = \frac{e_1 \cdot (\mathbf{b} \times \mathbf{e}_0)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)}$$

$$u = \frac{b \cdot P}{\hat{P}} \qquad v = \frac{D \cdot Q}{\hat{P}} \qquad t = \frac{e_1 \cdot Q}{\hat{P}} \qquad P = (D \times e_1)$$

$$\hat{P} = e_0 \cdot P$$

We can calculate only two cross products

$$u = \frac{b \cdot (\mathbf{D} \times \mathbf{e}_1)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)} \qquad v = \frac{D \cdot (\mathbf{b} \times \mathbf{e}_0)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)} \qquad t = \frac{e_1 \cdot (\mathbf{b} \times \mathbf{e}_0)}{e_0 \cdot (\mathbf{D} \times \mathbf{e}_1)}$$

$$u = \frac{b \cdot P}{\hat{P}} \qquad v = \frac{D \cdot Q}{\hat{P}} \qquad t = \frac{e_1 \cdot Q}{\hat{P}} \qquad P = (D \times e_1)$$

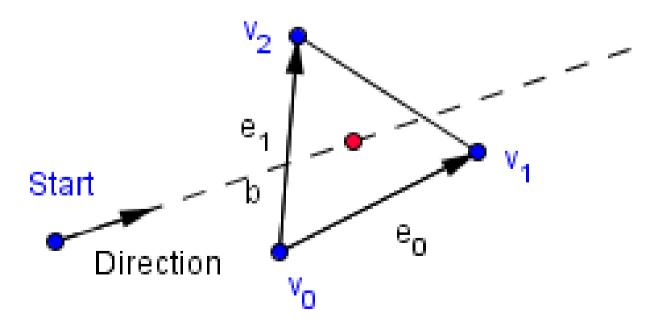
$$\hat{P} = e_0 \cdot P$$

• What happens if: $\hat{P} = e_0 \cdot (D \times e_1) \sim 0$

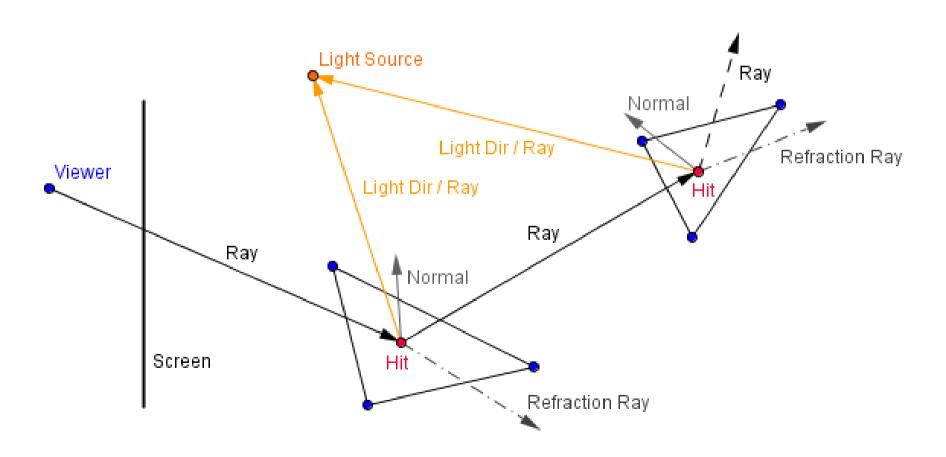
Can it happen, and what does it mean?

$$u < 0$$
 $u > 1$ $v < 0$ $v > 1$ $u + v > 1$ $t \le 0$

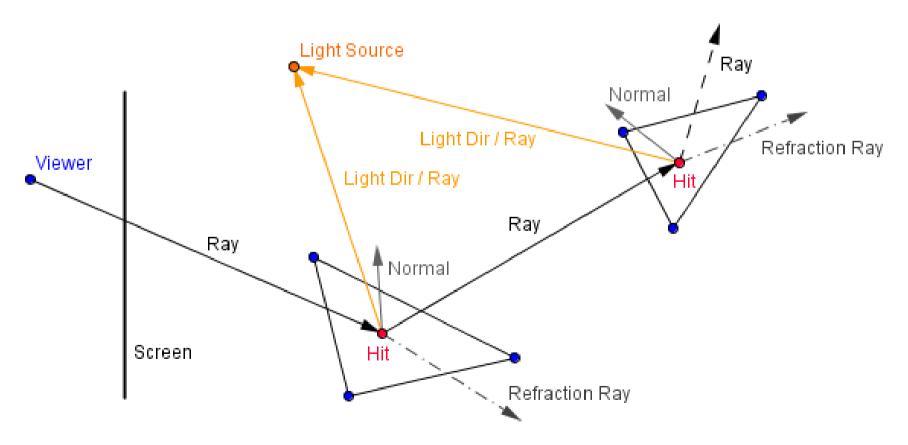
Start + t · Direction =
$$v_0 + u \cdot e_0 + v \cdot e_1$$



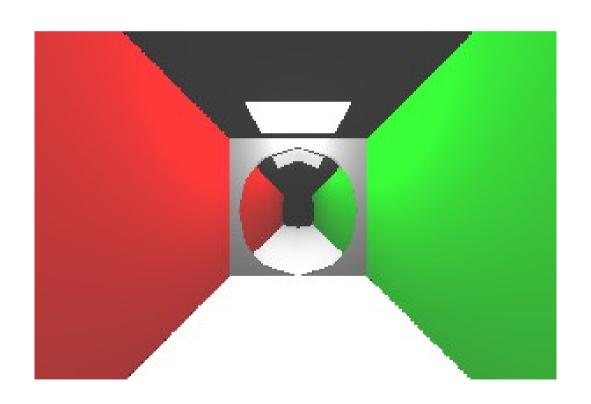
 We can use ray tracing to model the light paths (in reverse)



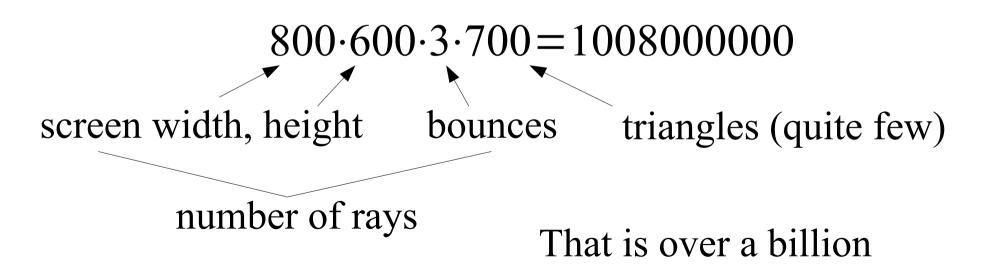
- What is the origin of a ray?
 What about the direction?



 Accurate way to model reflective / refractive surfaces.



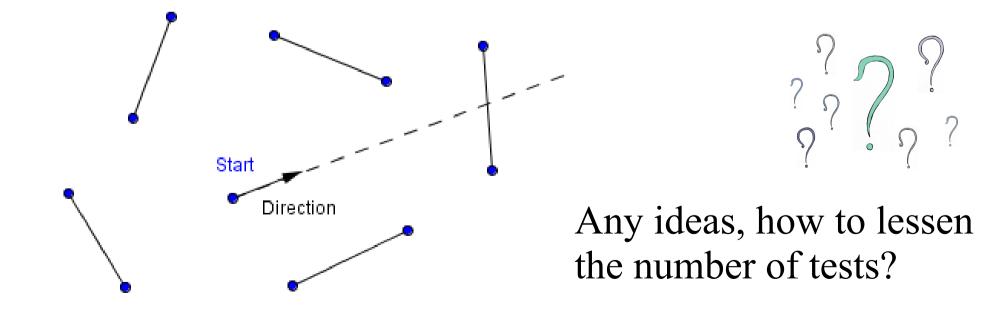
- Accurate way to model reflective / refractive surfaces.
- Quite expensive, we need to test each ray against our geometry.



intersection tests each frame!

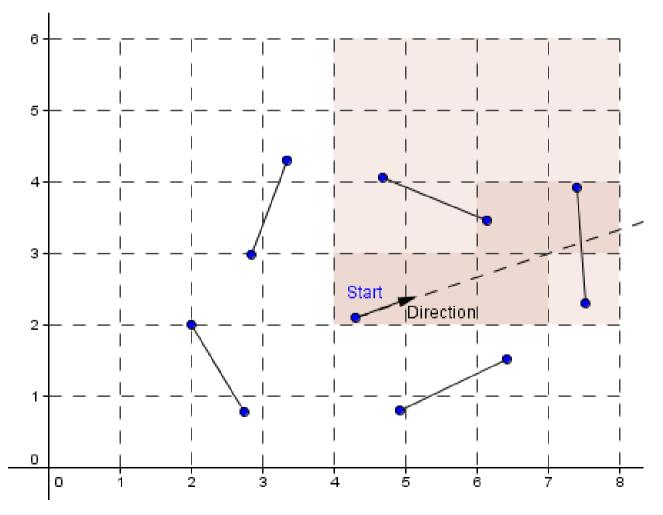
Space Partitioning

- We can keep our objects in a structure, that lessens the number of intersections we need to test.
- Imagine in 2D a ray and a some line segments.



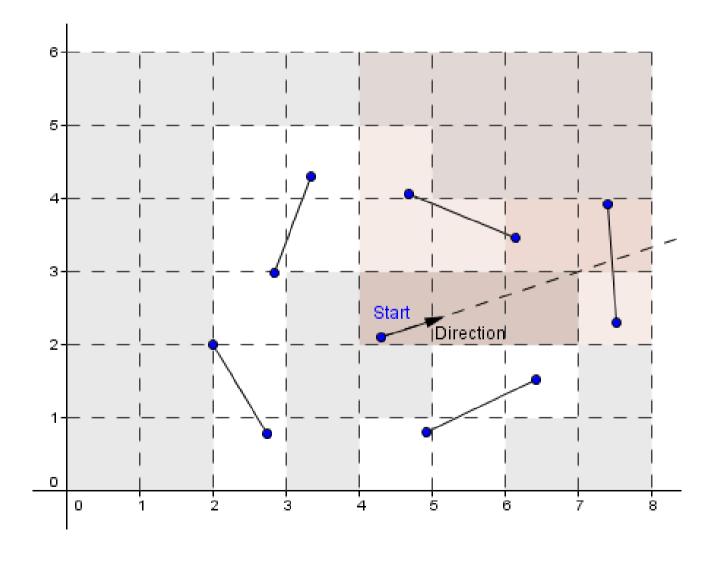
First Idea: Axis-Aligned Grid

 We can limit the number of grid cells to check, by accounting for the ray's direction.



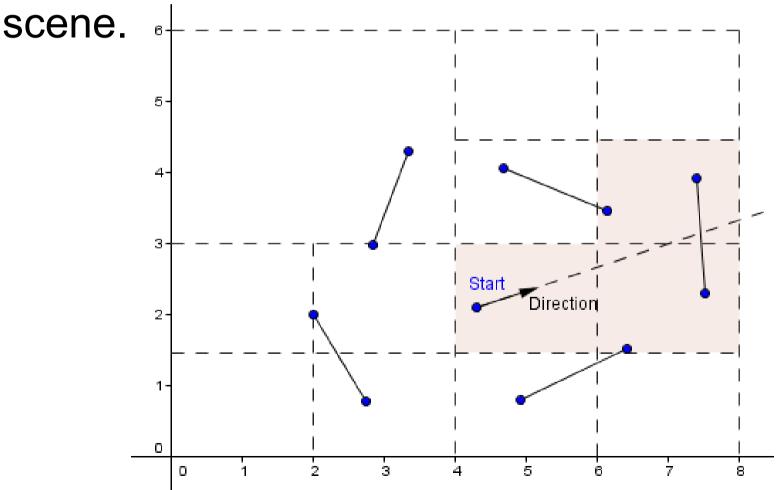
First Idea: Axis-Aligned Grid

Most of the cells are empty...



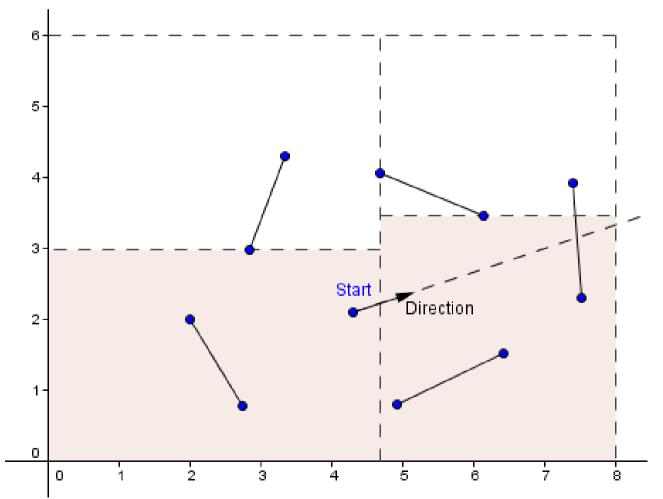
Second Idea: Quadtree / Octree

• Make the cells divide, if there are more objects inside them. Start with one cell for the entire



Third Idea: K-D Tree

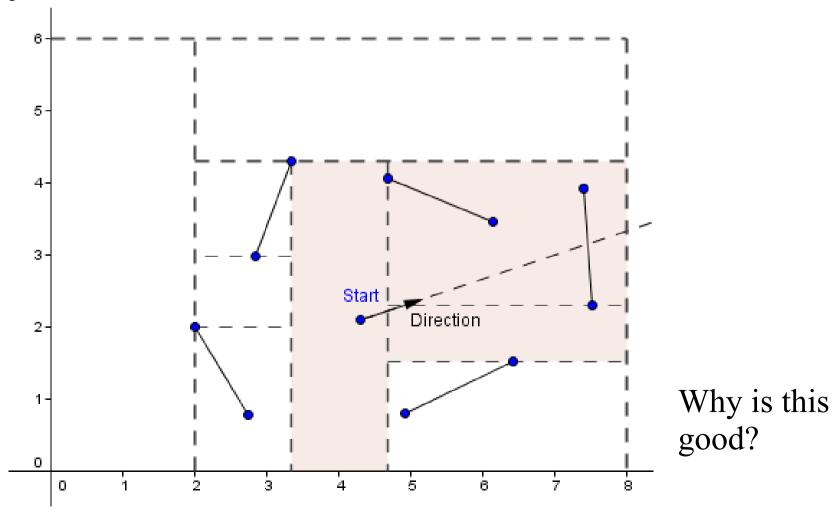
 Split according to the geometry. Traditionally by the median value.



No node will be empty.

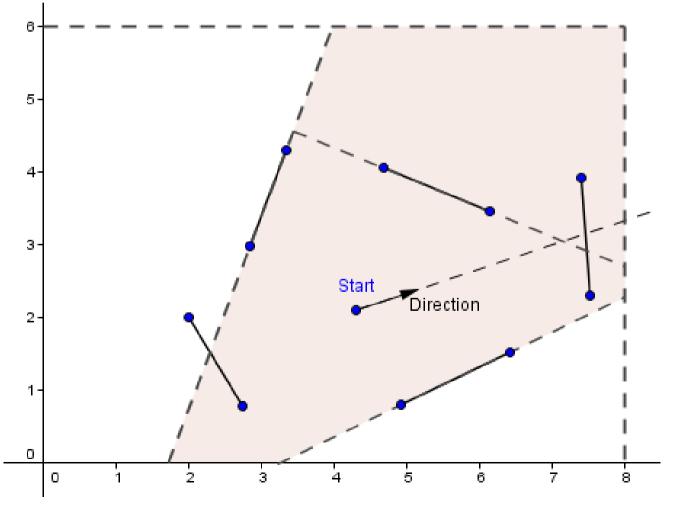
Third Idea: K-D Tree

 Split with a rule to maximize the occurance of empty nodes.



Fourth Idea: BSP Tree

 Binary Space Partitioning divides the space with existing polygons.

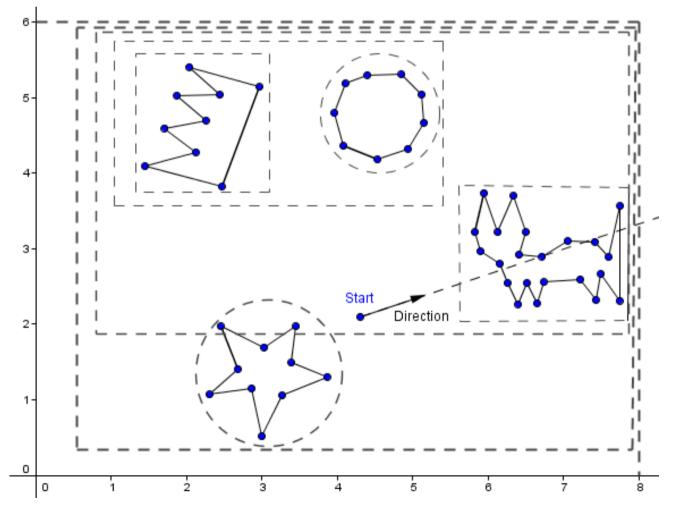


Not that useful for ray tracing.

Works well for geometry ordering (front to back).

Fifth Idea: BVH

 Bounding Volume Hierarchy – create a tree of bounding polygons around objects.



Bounding objects also useful for collision detection.

Axis-aligned bounding boxes.

Bounding spheres.

Space Partitioning

- Possible to combine different methods.
- Create structures, based on your own rules.
- Some better for dynamic, some for static scene.
- Ray Tracing Acceleration Data Structures: http://www.cse.iitb.ac.in/~paragc/teaching/2009/cs 475/notes/accelerating_raytracing_sumair.pdf
- Octree vs BVH: http://thomasdiewald.com/blog/?p=1488

What did you found out today?

What more would you like to know?

Next time

Global Illumination