

Computer Graphics
MTAT.03.015

Raimond Tunnel

The Road So Far...

Last week

This week

Transformations

● Watch the Computerphile video, try to find out:

1) Why are we using matrices?

The True Power of the Matrix (Transformations in Graphics) – Computerphile
https://www.youtube.com/watch?v=vQ60rFwh2ig

https://www.youtube.com/watch?v=vQ60rFwh2ig

Transformations

● Watch the Computerphile video, try to find out:

1) Why are we using matrices?

2) Where do the homogeneous coordinates come in?

The True Power of the Matrix (Transformations in Graphics) – Computerphile
https://www.youtube.com/watch?v=vQ60rFwh2ig

https://www.youtube.com/watch?v=vQ60rFwh2ig

Linear Transformations

● Also called linear mapping, linear function

Linear Transformations

● Also called linear mapping, linear function

● Transforms a vector space V into a vector

space W, while preserving addition and scalar

multiplication

Linear Transformations

● Also called linear mapping, linear function

● Transforms a vector space V into a vector

space W, while preserving addition and scalar

multiplication

● Satisfies: f (α⋅v+β⋅u)=α⋅f (v)+β⋅f (u)

Linear Transformations

● Also called linear mapping, linear function

● Transforms a vector space V into a vector

space W, while preserving addition and scalar

multiplication

● Satisfies:

● In 3D:

f (α⋅v+β⋅u)=α⋅f (v)+β⋅f (u)

α ,β∈ℝ u , v∈ℝ3

Linear Transformations

● Take our vector space of points

Linear Transformations

● Take our vector space of points

● Take for example a point p=(2 1)

Linear Transformations

● Take our vector space of points

● Take for example a point

● Try mappings:

1)

2)

3)

4)

p=(2 1)

f (p)=(px p y)

f (p)=(2⋅px p y)

f (p)=(p x 2⋅p y)

f (p)=(2⋅px 2⋅p y)

Linear Transformations

● From Algebra you know that all linear trans-
formations can be represented as matrices.

Linear transformation → Matrix

Linear Transformations

● From Algebra you know that all linear trans-
formations can be represented as matrices.

● Every matrix also gives you a linear
transformation.

Linear transformation → Matrix

Linear transformation ← Matrix

Linear Transformations

● What would be the matrices for the linear
transformations we just saw?

f (p)=(? ?
? ?)⋅(pxp y)

f (p)=(px p y)

f (p)=(2⋅px p y)

f (p)=(p x 2⋅p y)

f (p)=(2⋅px 2⋅p y)

Scale

● Stretches or shrinks the space

(
a x 0 0
0 a y 0
0 0 a z)

a
x
 – x-axis scale factor

a
y
 – y-axis scale factor

a
x
 – z-axis scale factor

(ax 0
0 a y)

a
x
 – x-axis scale factor

a
y
 – y-axis scale factor2D

3D

Scale
● Transformations can be easily understood, if we

see what they do with the standard basis

Scale
● Transformations can be easily understood, if we

see what they do with the standard basis

Scale
● Transformations can be easily understood, if we

see what they do with the standard basis

● Furthermore, one can read the transformed
standard basis from the columns of the
transformation

Shear

● Shear-x, shear-y
● Tilts one of the axes

Shear-x or shear-y?
Matrix?

Shear
● Shear-y, we tilt the x basis vector

parallel to y by angle φ counter-
clockwise

● Shear-x, we tilt the y basis vector
parallel to x by angle φ clockwise

(1 0
tan (ϕ) 1)⋅(xy)=(x

y+ tan (ϕ)⋅x)

(1 tan(ϕ)

0 1)⋅(xy)=(x+ tan(ϕ)⋅y
y)

What about in 3D?

Rotation

● We want to keep the basis vectors on the unit-
circle.

Can you derive the
matrix?

Rotation

e '0=(∣a∣,∣b∣)=(cos(α) ,sin (α))

e '1=(∣a '∣,∣b '∣)=(−sin(α) ,cos(α))
cos(α)=

∣a∣
∣e '0∣

=
∣a∣
1

=∣a∣

Rotation

● Rotates around an axis (or a direction)

(cos(α) −sin(α)

sin(α) cos(α))2D α – Positive angle
 to rotate by

Rotation

● Rotates around an axis (or a direction)

(cos(α) −sin(α)

sin(α) cos(α))2D

3D

α – Positive angle
 to rotate by

● Similar matrices that rotate around
each axis.

Rotation

● Rotates around an axis (or a direction)

(cos(α) −sin(α)

sin(α) cos(α))2D

3D

α – Positive angle
 to rotate by

● Similar matrices that rotate around
each axis.

● What about rotation around an
arbitrary direction?

Linear Transformations

Defined geometry

Linear Transformations

Linear Transformations

Scale

Linear Transformations

Linear Transformations

Rotation

Linear Transformations

Linear Transformations

Shear

Linear Transformations

● Will these be enough?

Translation

● Imagine a 1D world located at y=1 line in 2D.

Translation

● Imagine a 1D world located at y=1 line in 2D.

Our world

Objects

Translation

● Imagine a 1D world located at y=1 line in 2D.

Our world

Objects

● Notice that all the points are in the form: (x, 1)

Translation

● How to transform the 2D space so that stuff in
the 1D hyperplane y=1 moves an equal amount?

Translation

● Shear-x by tan(45°) = 1

● Shear-x with tan(63.4°) = 2

Translation
● Affine transformation in the current space, linear

shear transformation in 1 dimension higher space.

(1 xt
0 1)⋅(x1)=(x+ xt1)

(
1 0 x t
0 1 yt
0 0 1)⋅(

x
y
1)=(

x+ xt
y+ y t

1)

(
1 0 0 xt
0 1 0 yt
0 0 1 zt
0 0 0 1

)⋅(
x
y
z
1
)=(

x+ x t
y+ y t
z+ z t

1
)1D

2D
3D

Shear-x

Shear-xy Shear-xyz

Transformations

● This together gives us a very good toolset to
transform our geometry as we wish.

Affin
e

tra
snform

atio
n

Augmented matrix

(
a b c x t
d e f y t
g h i z t
0 0 0 1

)⋅(
x
y
z
1
)=(

ax+by+cz+x t
dx+ey+ fz+ y t
gx+hy+iz+ z t

1
)

Transformations

● This together gives us a very good toolset to
transform our geometry as we wish.

Linear transformations

Affin
e

tra
snform

atio
n

Augmented matrix

(
a b c x t
d e f y t
g h i z t
0 0 0 1

)⋅(
x
y
z
1
)=(

ax+by+cz+x t
dx+ey+ fz+ y t
gx+hy+iz+ z t

1
)

Transformations

● This together gives us a very good toolset to
transform our geometry as we wish.

Translation columnLinear transformations

Affin
e

tra
snform

atio
n

Augmented matrix

(
a b c x t
d e f y t
g h i z t
0 0 0 1

)⋅(
x
y
z
1
)=(

ax+by+cz+x t
dx+ey+ fz+ y t
gx+hy+iz+ z t

1
)

Transformations

● This together gives us a very good toolset to
transform our geometry as we wish.

Used for perspective projection...

Translation columnLinear transformations

Affin
e

tra
snform

atio
n

Augmented matrix

(
a b c x t
d e f y t
g h i z t
0 0 0 1

)⋅(
x
y
z
1
)=(

ax+by+cz+x t
dx+ey+ fz+ y t
gx+hy+iz+ z t

1
)

Multiple Transformations

● How can we apply multiple transformations?

A⋅(B⋅(C⋅v))

● Is it the same as?

B⋅(A⋅(C⋅v))

Transformations

● In some graphics libraries you assign the
position, rotation, translation and possibly
the scale individually.

Transformations

● In some graphics libraries you assign the
position, rotation, translation and possibly
the scale individually.

Transformations

● In some graphics libraries you assign the
position, rotation, translation and possibly
the scale individually.

● To the GPU the transformations are sent as a
matrix (model matrix).

Transformations

● In some graphics libraries you assign the
position, rotation, translation and possibly
the scale individually.

● To the GPU the transformations are sent as a
matrix (model matrix).

projectionMatrix⋅viewMatrix⋅modelMatrix⋅v

P⋅V⋅M⋅v

Transformations

● In some graphics libraries you assign the
position, rotation, translation and possibly
the scale individually.

● To the GPU the transformations are sent as a
matrix (model matrix).

● Questions about transformations?

Scene Graph
● Dependency between (parts of) objects.

Scene Graph

S⋅B⋅L⋅v

S⋅B⋅R⋅v

Left hand

Right hand

S⋅B⋅v
Body

S⋅H⋅v
Head

Matrix Stack
● Stack can be used to save and load matrices

(intermediary states)

M
0

M
1

M
2

push(M)
pop()

peek() / top()

Matrix Stack
● Stack can be used to save and load matrices

(intermediary states)
● Current state is in the top of the stack

1) M = Identity, push(M)

I

Matrix Stack
● Stack can be used to save and load matrices

(intermediary states)
● Current state is in the top of the stack

1) M = Identity, push(M)

2) M *= S, push(M)

I

Move to snowman's space

I S⋅

Matrix Stack
● Stack can be used to save and load matrices

(intermediary states)
● Current state is in the top of the stack

1) M = Identity, push(M)

2) M *= S, push(M)

3) M *= H, push(M)

I

I S⋅

Move to head's space

I S H⋅ ⋅

Matrix Stack
● Stack can be used to save and load matrices

(intermediary states)
● Current state is in the top of the stack

1) M = Identity, push(M)

2) M *= S, push(M)

3) M *= H, push(M)

4) Draw head vertices

I

I S⋅

I S H⋅ ⋅

Matrix Stack
● Stack can be used to save and load matrices

(intermediary states)
● Current state is in the top of the stack

1) M = Identity, push(M)

2) M *= S, push(M)

3) M *= H, push(M)

4) Draw head vertices

I

I S⋅

I S H⋅ ⋅

We now want to get back to the

snowman's sp
ace

Matrix Stack
● Stack can be used to save and load matrices

(intermediary states)
● Current state is in the top of the stack

I

I S⋅

I S H⋅ ⋅

1) M = Identity, push(M)

2) M *= S, push(M)

3) M *= H, push(M)

4) Draw head vertices

5) pop(), M = top()

Matrix Stack
● Stack can be used to save and load matrices

(intermediary states)
● Current state is in the top of the stack

2) ...

3) M *= H, push(M)

4) Draw head vertices

5) pop(), M = top()

I

I S⋅

Matrix Stack
● Stack can be used to save and load matrices

(intermediary states)
● Current state is in the top of the stack

2) ...

3) M *= H, push(M)

4) Draw head vertices

5) pop(), M = top()

6) M *= B, push(M)

I

I S⋅

I S B⋅ ⋅
Move to body's space

Matrix Stack
● Stack can be used to save and load matrices

(intermediary states)
● Current state is in the top of the stack

2) ...

3) M *= H, push(M)

4) Draw head vertices

5) pop(), M = top()

6) M *= B, push(M)

7) Draw body verticesI

I S⋅

I S B⋅ ⋅

Matrix Stack
● Stack can be used to save and load matrices

(intermediary states)
● Current state is in the top of the stack

5) ...

6) M *= B, push(M)

7) Draw body vertices

8) ... ?

I

I S⋅

I S B⋅ ⋅

Matrix Stack

● Each (part of an) object can be modelled in its
own local space.

Matrix Stack

● Each (part of an) object can be modelled in its
own local space.

● When we traverse the scene graph, important
intermediary states are saved / loaded.

push()

pus
h()

push()

pop()
pop()

pop
()

A

A⋅B

A⋅C

Matrix Stack

● Each (part of an) object can be modelled in its
own local space.

● When we traverse the scene graph, important
intermediary states can saved / loaded.

● No need to recalculate same matrix
multiplications many times or find inverse
transformations.

M=A⋅B⋅D⋅D1
=A⋅B

stack.pop(), M=stack.top()
vs

Matrix Stack

● Each (part of an) object can be modelled in its
own local space.

● When we traverse the scene graph, important
intermediary states can saved / loaded.

● No need to recalculate same matrix
multiplications many times or find inverse
transformations.

● Questions about the matrix stack?

What new did you find out today?

What more would you like to know?

Next time

Frames of reference, projections

	Slaid 1
	Slaid 2
	Slaid 3
	Slaid 4
	Slaid 5
	Slaid 6
	Slaid 7
	Slaid 8
	Slaid 9
	Slaid 10
	Slaid 11
	Slaid 12
	Slaid 13
	Slaid 14
	Slaid 15
	Slaid 16
	Slaid 17
	Slaid 18
	Slaid 19
	Slaid 20
	Slaid 21
	Slaid 22
	Slaid 23
	Slaid 24
	Slaid 25
	Slaid 26
	Slaid 27
	Slaid 28
	Slaid 29
	Slaid 30
	Slaid 31
	Slaid 32
	Slaid 33
	Slaid 34
	Slaid 35
	Slaid 36
	Slaid 37
	Slaid 38
	Slaid 39
	Slaid 40
	Slaid 41
	Slaid 42
	Slaid 43
	Slaid 44
	Slaid 45
	Slaid 46
	Slaid 47
	Slaid 48
	Slaid 49
	Slaid 50
	Slaid 51
	Slaid 52
	Slaid 53
	Slaid 54
	Slaid 55
	Slaid 56
	Slaid 57
	Slaid 58
	Slaid 63
	Slaid 64
	Slaid 65
	Slaid 66
	Slaid 67

