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The Road So Far...

Last week

This week



  

Transformations

● Watch the Computerphile video, try to find out:

1) Why are we using matrices?

The True Power of the Matrix (Transformations in Graphics) – Computerphile
https://www.youtube.com/watch?v=vQ60rFwh2ig 

https://www.youtube.com/watch?v=vQ60rFwh2ig


  

Transformations

● Watch the Computerphile video, try to find out:

1) Why are we using matrices?

2) Where do the homogeneous coordinates come in?

The True Power of the Matrix (Transformations in Graphics) – Computerphile
https://www.youtube.com/watch?v=vQ60rFwh2ig 

https://www.youtube.com/watch?v=vQ60rFwh2ig


  

Linear Transformations

● Also called linear mapping, linear function
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Linear Transformations

● Also called linear mapping, linear function

● Transforms a vector space V into a vector 

space W, while preserving addition and scalar 

multiplication

● Satisfies: f (α⋅v+β⋅u)=α⋅f (v)+β⋅f (u)



  

Linear Transformations

● Also called linear mapping, linear function

● Transforms a vector space V into a vector 

space W, while preserving addition and scalar 

multiplication

● Satisfies:

● In 3D:

f (α⋅v+β⋅u)=α⋅f (v)+β⋅f (u)

α ,β∈ℝ u , v∈ℝ3



  

Linear Transformations

● Take our vector space of points



  

Linear Transformations

● Take our vector space of points

● Take for example a point p=(2 1)



  

Linear Transformations

● Take our vector space of points

● Take for example a point

● Try mappings:

1)

2)

3)

4)

p=(2 1)

f ( p)=( px p y)

f ( p)=(2⋅px p y)

f ( p)=( p x 2⋅p y)

f ( p)=(2⋅px 2⋅p y)



  

Linear Transformations

● From Algebra you know that all linear trans-
formations can be represented as matrices.

Linear transformation → Matrix



  

Linear Transformations

● From Algebra you know that all linear trans-
formations can be represented as matrices.

● Every matrix also gives you a linear 
transformation.

Linear transformation → Matrix

Linear transformation ← Matrix



  

Linear Transformations

● What would be the matrices for the linear 
transformations we just saw?

f ( p)=(? ?
? ?)⋅( pxp y)

f ( p)=( px p y)

f ( p)=(2⋅px p y)

f ( p)=( p x 2⋅p y)

f ( p)=(2⋅px 2⋅p y)



  

Scale

● Stretches or shrinks the space

(
a x 0 0
0 a y 0
0 0 a z)

a
x
 – x-axis scale factor

a
y
 – y-axis scale factor

a
x
 – z-axis scale factor

(ax 0
0 a y)

a
x
 – x-axis scale factor

a
y
 – y-axis scale factor2D

3D



  

Scale
● Transformations can be easily understood, if we 

see what they do with the standard basis



  

Scale
● Transformations can be easily understood, if we 

see what they do with the standard basis



  

Scale
● Transformations can be easily understood, if we 

see what they do with the standard basis

● Furthermore, one can read the transformed 
standard basis from the columns of the 
transformation



  

Shear

● Shear-x, shear-y
● Tilts one of the axes

Shear-x or shear-y?
Matrix?



  

Shear
● Shear-y, we tilt the x basis vector 

parallel to y by angle φ counter-
clockwise

● Shear-x, we tilt the y basis vector 
parallel to x by angle φ clockwise

( 1 0
tan (ϕ) 1)⋅(xy)=( x

y+ tan (ϕ)⋅x)

(1 tan(ϕ)

0 1 )⋅(xy)=(x+ tan(ϕ)⋅y
y )

What about in 3D?



  

Rotation

● We want to keep the basis vectors on the unit-
circle.

Can you derive the 
matrix?



  

Rotation

e '0=(∣a∣,∣b∣)=(cos(α) ,sin (α))

e '1=(∣a '∣,∣b '∣)=(−sin(α) ,cos(α))
cos(α)=

∣a∣
∣e '0∣

=
∣a∣
1

=∣a∣



  

Rotation

● Rotates around an axis (or a direction)

(cos(α) −sin(α)

sin(α) cos(α) )2D α – Positive angle 
      to rotate by



  

Rotation

● Rotates around an axis (or a direction)

(cos(α) −sin(α)

sin(α) cos(α) )2D

3D

α – Positive angle 
      to rotate by

● Similar matrices that rotate around 
each axis.



  

Rotation

● Rotates around an axis (or a direction)

(cos(α) −sin(α)

sin(α) cos(α) )2D

3D

α – Positive angle 
      to rotate by

● Similar matrices that rotate around 
each axis.

● What about rotation around an 
arbitrary direction?



  

Linear Transformations

Defined geometry



  

Linear Transformations



  

Linear Transformations

Scale



  

Linear Transformations



  

Linear Transformations

Rotation



  

Linear Transformations



  

Linear Transformations

Shear



  

Linear Transformations

● Will these be enough?



  

Translation

● Imagine a 1D world located at y=1 line in 2D.



  

Translation

● Imagine a 1D world located at y=1 line in 2D.

Our world

Objects



  

Translation

● Imagine a 1D world located at y=1 line in 2D.

Our world

Objects

● Notice that all the points are in the form: (x, 1)



  

Translation

● How to transform the 2D space so that stuff in 
the 1D hyperplane y=1 moves an equal amount?



  

Translation

● Shear-x by tan(45°) = 1

● Shear-x with tan(63.4°) = 2



  

Translation
● Affine transformation in the current space, linear 

shear transformation in 1 dimension higher space.

(1 xt
0 1 )⋅(x1)=(x+ xt1 )

(
1 0 x t
0 1 yt
0 0 1 )⋅(

x
y
1)=(

x+ xt
y+ y t

1 )

(
1 0 0 xt
0 1 0 yt
0 0 1 zt
0 0 0 1

)⋅(
x
y
z
1
)=(

x+ x t
y+ y t
z+ z t

1
)1D

2D
3D

Shear-x

Shear-xy Shear-xyz



  

Transformations

● This together gives us a very good toolset to 
transform our geometry as we wish.

Affin
e

tra
snform

atio
n

Augmented matrix

(
a b c x t
d e f y t
g h i z t
0 0 0 1

)⋅(
x
y
z
1
)=(

ax+by+cz+x t
dx+ey+ fz+ y t
gx+hy+iz+ z t

1
)



  

Transformations

● This together gives us a very good toolset to 
transform our geometry as we wish.

Linear transformations

Affin
e

tra
snform

atio
n

Augmented matrix

(
a b c x t
d e f y t
g h i z t
0 0 0 1

)⋅(
x
y
z
1
)=(

ax+by+cz+x t
dx+ey+ fz+ y t
gx+hy+iz+ z t

1
)



  

Transformations

● This together gives us a very good toolset to 
transform our geometry as we wish.

Translation columnLinear transformations

Affin
e

tra
snform

atio
n

Augmented matrix

(
a b c x t
d e f y t
g h i z t
0 0 0 1

)⋅(
x
y
z
1
)=(

ax+by+cz+x t
dx+ey+ fz+ y t
gx+hy+iz+ z t

1
)



  

Transformations

● This together gives us a very good toolset to 
transform our geometry as we wish.

Used for perspective projection...

Translation columnLinear transformations

Affin
e

tra
snform

atio
n

Augmented matrix

(
a b c x t
d e f y t
g h i z t
0 0 0 1

)⋅(
x
y
z
1
)=(

ax+by+cz+x t
dx+ey+ fz+ y t
gx+hy+iz+ z t

1
)



  

Multiple Transformations

● How can we apply multiple transformations?

A⋅(B⋅(C⋅v))

● Is it the same as?

B⋅(A⋅(C⋅v))



  

Transformations

● In some graphics libraries you assign the 
position, rotation, translation and possibly 
the scale individually.
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Transformations

● In some graphics libraries you assign the 
position, rotation, translation and possibly 
the scale individually.

● To the GPU the transformations are sent as a 
matrix (model matrix).



  

Transformations

● In some graphics libraries you assign the 
position, rotation, translation and possibly 
the scale individually.

● To the GPU the transformations are sent as a 
matrix (model matrix).

projectionMatrix⋅viewMatrix⋅modelMatrix⋅v

P⋅V⋅M⋅v



  

Transformations

● In some graphics libraries you assign the 
position, rotation, translation and possibly 
the scale individually.

● To the GPU the transformations are sent as a 
matrix (model matrix).

● Questions about transformations?



  

Scene Graph
● Dependency between (parts of) objects.



  

Scene Graph

S⋅B⋅L⋅v

S⋅B⋅R⋅v

Left hand

Right hand

S⋅B⋅v
Body

S⋅H⋅v
Head



  

Matrix Stack
● Stack can be used to save and load matrices 

(intermediary states)

M
0

M
1

M
2

push(M)
pop()

peek() / top()



  

Matrix Stack
● Stack can be used to save and load matrices 

(intermediary states)
● Current state is in the top of the stack

1) M = Identity, push(M)

I



  

Matrix Stack
● Stack can be used to save and load matrices 

(intermediary states)
● Current state is in the top of the stack

1) M = Identity, push(M)

2) M *= S, push(M)

I

Move to snowman's space

I  S⋅



  

Matrix Stack
● Stack can be used to save and load matrices 

(intermediary states)
● Current state is in the top of the stack

1) M = Identity, push(M)

2) M *= S, push(M)

3) M *= H, push(M)

I

I  S⋅

Move to head's space

I  S  H⋅ ⋅



  

Matrix Stack
● Stack can be used to save and load matrices 

(intermediary states)
● Current state is in the top of the stack

1) M = Identity, push(M)

2) M *= S, push(M)

3) M *= H, push(M)

4) Draw head vertices

I

I  S⋅

I  S  H⋅ ⋅



  

Matrix Stack
● Stack can be used to save and load matrices 

(intermediary states)
● Current state is in the top of the stack

1) M = Identity, push(M)

2) M *= S, push(M)

3) M *= H, push(M)

4) Draw head vertices

I

I  S⋅

I  S  H⋅ ⋅

We now want to get back to the 

snowman's sp
ace



  

Matrix Stack
● Stack can be used to save and load matrices 

(intermediary states)
● Current state is in the top of the stack

I

I  S⋅

I  S  H⋅ ⋅

1) M = Identity, push(M)

2) M *= S, push(M)

3) M *= H, push(M)

4) Draw head vertices

5) pop(), M = top()



  

Matrix Stack
● Stack can be used to save and load matrices 

(intermediary states)
● Current state is in the top of the stack

2) ...

3) M *= H, push(M)

4) Draw head vertices

5) pop(), M = top()

I

I  S⋅



  

Matrix Stack
● Stack can be used to save and load matrices 

(intermediary states)
● Current state is in the top of the stack

2) ...

3) M *= H, push(M)

4) Draw head vertices

5) pop(), M = top()

6) M *= B, push(M)

I

I  S⋅

I  S  B⋅ ⋅
Move to body's space



  

Matrix Stack
● Stack can be used to save and load matrices 

(intermediary states)
● Current state is in the top of the stack

2) ...

3) M *= H, push(M)

4) Draw head vertices

5) pop(), M = top()

6) M *= B, push(M)

7) Draw body verticesI

I  S⋅

I  S  B⋅ ⋅



  

Matrix Stack
● Stack can be used to save and load matrices 

(intermediary states)
● Current state is in the top of the stack

5) ...

6) M *= B, push(M)

7) Draw body vertices

8) ... ?

I

I  S⋅

I  S  B⋅ ⋅



  

Matrix Stack

● Each (part of an) object can be modelled in its 
own local space.



  

Matrix Stack

● Each (part of an) object can be modelled in its 
own local space.

● When we traverse the scene graph, important 
intermediary states are saved / loaded.

push()

pus
h()

push()

pop()
pop()

pop
()

A

A⋅B

A⋅C



  

Matrix Stack

● Each (part of an) object can be modelled in its 
own local space.

● When we traverse the scene graph, important 
intermediary states can saved / loaded.

● No need to recalculate same matrix 
multiplications many times or find inverse 
transformations.

M=A⋅B⋅D⋅D1
=A⋅B

stack.pop(), M=stack.top()
vs



  

Matrix Stack

● Each (part of an) object can be modelled in its 
own local space.

● When we traverse the scene graph, important 
intermediary states can saved / loaded.

● No need to recalculate same matrix 
multiplications many times or find inverse 
transformations.

● Questions about the matrix stack?



  

What new did you find out today?

What more would you like to know?

Next time 

Frames of reference, projections
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