The Road So Far...

Last week & This week
Frames of Reference

Can you name different spaces (frames of reference) we use?
Frames of Reference

- Can you name different spaces (frames of reference) we use?
Object Space \rightarrow World Space

- We model our objects in object space
Object Space → World Space

- We model our objects in object space
- Symmetrically from the origin
Object Space → World Space

- We model our objects in object space
 - Symmetrically from the origin
 - Up from the origin
Object Space → World Space

- We model our objects in object space
 - Symmetrically from the origin
 - Up from the origin
- We position, orient and scale our object with the **model matrix**, thus creating the world space!
Object Space → World Space

- We model our objects in object space
 - Symmetrically from the origin
 - Up from the origin
- We position, orient and scale our object with the model matrix, thus creating the world space!
- World space is like the root node in the scene graph
Object Space \rightarrow World Space

- We model our objects in object space
 - *Symmetrically* from the origin
 - Up from the origin
- We position, orient and scale our object with the *model matrix*, thus creating the world space!
- World space is like the root node in the scene graph:
 - Origin defined by the identity transformation
Object Space → World Space

- We model our objects in object space
 - Symmetrically from the origin
 - Up from the origin
- We position, orient and scale our object with the model matrix, thus creating the world space!
- World space is like the root node in the scene graph:
 - Origin defined by the identity transformation
 - Every child transformed relative to it
Object Space \rightarrow World Space

This is what you did last week. :)

Diagram showing the transformation from Object Space to World Space with labeled points and arrows indicating the direction.
Object Space \rightarrow World Space

\[\text{projectionMatrix} \cdot \text{viewMatrix} \cdot \text{modelMatrix} \cdot v \]

\[P \cdot V \cdot M \cdot v \]

This is what you did last week. :)

World Space \rightarrow Camera Space

- We want to represent everything related to the camera (to make projection easier)

Transform so that this is the origin + basis
World Space \rightarrow Camera Space

- We want to represent everything related to the camera (to make projection easier)
- We can think of the camera as another object in the scene.
World Space \rightarrow Camera Space

- We want to represent everything related to the camera (to make projection easier)
- We can think of the camera as another object in the scene.
 - It has its own rotation and position.
World Space → Camera Space

- We want to represent everything related to the camera (to make projection easier)
- We can think of the camera as another object in the scene.
 - It has its own rotation and position.
 - Scale is not really relevant for the camera.
World Space → Camera Space

• Assume that we have a camera's model transformation matrix:
World Space \rightarrow Camera Space

- Assume that we have a camera's model transformation matrix:

$$M_{\text{camera}} = \begin{pmatrix} right_x & up_x & back_x & pos_x \\ right_y & up_y & back_y & pos_y \\ right_z & up_z & back_z & pos_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
World Space \rightarrow Camera Space

- Assume that we have a camera's model transformation matrix:

$$
M_{\text{camera}} = \begin{pmatrix}
right_x & up_x & back_x & pos_x \\
right_y & up_y & back_y & pos_y \\
right_z & up_z & back_z & pos_z \\
0 & 0 & 0 & 1
\end{pmatrix}
$$

- Remember that the columns are the transformed standard basis...
World Space \rightarrow Camera Space

- Assume that we have a camera's model transformation matrix:

$$M_{\text{camera}} = \begin{pmatrix}
right_x & up_x & back_x & pos_x \\
right_y & up_y & back_y & pos_y \\
right_z & up_z & back_z & pos_z \\
0 & 0 & 0 & 1
\end{pmatrix}$$

- Remember that the columns are the transformed standard basis...

- Can you come up with a matrix that describes our world relative to the camera?
World Space \rightarrow Camera Space

- **View matrix** can be found like this:
World Space → Camera Space

- **View matrix** can be found like this:

 1) Camera's linear transform. is an orthonormal matrix

\[
M_{\text{camera}} = \begin{pmatrix}
 \text{right}_x & \text{up}_x & \text{back}_x & \text{pos}_x \\
 \text{right}_y & \text{up}_y & \text{back}_y & \text{pos}_y \\
 \text{right}_z & \text{up}_z & \text{back}_z & \text{pos}_z \\
 0 & 0 & 0 & 1
\end{pmatrix}
\]
World Space \rightarrow Camera Space

- **View matrix** can be found like this:
 1) Camera's linear transform. is an orthonormal matrix
 2) Transpose it to find the inverse

\[
\begin{pmatrix}
\text{right}_x & \text{up}_x & \text{back}_x \\
\text{right}_y & \text{up}_y & \text{back}_y \\
\text{right}_z & \text{up}_z & \text{back}_z \\
\end{pmatrix}^T = \begin{pmatrix}
\text{right}_x & \text{right}_y & \text{right}_z \\
\text{up}_x & \text{up}_y & \text{up}_z \\
\text{back}_x & \text{back}_y & \text{back}_z \\
\end{pmatrix}
\]
World Space → Camera Space

- **View matrix** can be found like this:
 1) Camera's linear transform is an orthonormal matrix
 2) Transpose it to find the inverse
 3) Camera's translation can be inverted by negation

\[
\begin{pmatrix}
\text{right}_x & \text{right}_y & \text{right}_z \\
\text{up}_x & \text{up}_y & \text{up}_z \\
\text{back}_x & \text{back}_y & \text{back}_z
\end{pmatrix}
\]

\[
- \begin{pmatrix}
pos_x \\
pos_y \\
pos_z
\end{pmatrix}
= \begin{pmatrix}
- pos_x \\
- pos_y \\
- pos_z
\end{pmatrix}
\]
World Space → Camera Space

- **View matrix** can be found like this:

4) Put the two inverse transformations together in the opposite order

\[
V = \begin{pmatrix}
 \text{right}_x & \text{right}_y & \text{right}_z & 0 \\
 \text{up}_x & \text{up}_y & \text{up}_z & 0 \\
 \text{back}_z & \text{back}_y & \text{back}_z & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 1 & 0 & 0 & -pos_x \\
 0 & 1 & 0 & -pos_y \\
 0 & 0 & 1 & -pos_z \\
 0 & 0 & 0 & 1
\end{pmatrix}
\]
World Space → Camera Space

• **View matrix** can be found like this:

\[
V = \begin{pmatrix}
right_x & right_y & right_z & 0 \\
up_x & up_y & up_z & 0 \\
back_z & back_y & back_z & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
1 & 0 & 0 & -pos_x \\
0 & 1 & 0 & -pos_y \\
0 & 0 & 1 & -pos_z \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

• Transpose the rotation to inverse it
• Negate the translation to inverse it
• Multiply together in the reverse order
World Space \rightarrow Camera Space

- Usually it is more intuitive to specify the camera by its **position**, **point it is looking at**; and the **up-vector**
World Space → Camera Space

- Usually it is more intuitive to specify the camera by its position; point it is looking at; and the up-vector

Three.js:

```javascript
camera.position.set(x, y, z);
camera.up.set(upX, upY, upZ);
camera.lookAt(point);
```
World Space → Camera Space

- Usually it is more intuitive to specify the camera by its position; point it is looking at; and the up-vector

OpenGL:

```cpp
glm::mat4 view = glm::lookAt(
    glm::vec3(x, y, z),
    glm::vec3(pX, pY, pZ),
    glm::vec3(upX, upY, upZ)
);
```
World Space \rightarrow Camera Space

- Usually it is more intuitive to specify the camera by its **position**; point it is **looking at**; and the **up-vector**

- The up-vector may not be the same as the y-direction of camera's space. **It just gives a rough orientation.**
World Space → Camera Space

- Using the lookAt() command parameters, how to find the correct matrix?
- What do we have and what do we need?
World Space \rightarrow Camera Space

projectionMatrix \cdot \textcolor{red}{\textbf{viewMatrix}} \cdot \textcolor{red}{\textbf{modelMatrix}} \cdot v

\[P \cdot V \cdot M \cdot v \]
Camera Space → ND Space

- For the **normalized device space**, we transform the view frustum into a cube $[-1, 1]^3$.

![Diagram of a cube representing the normalized device space](attachment:image.png)
Camera Space \rightarrow ND Space

- For the normalized device space, we transform the view frustum into a cube $[-1, 1]^3$.
Camera Space \rightarrow ND Space

- For the **normalized device space**, we transform the view frustum into a cube $[-1, 1]^3$.

Slices from $x=0$ plane
Camera Space → ND Space

- For the normalized device space, we transform the view frustum into a cube $[-1, 1]^3$.

Perspective

Slices from $x=0$ plane
Camera Space \rightarrow ND Space

- For the normalized device space, we transform the view frustum into a cube $[-1, 1]^3$.

- We want to flip the z-axis, because our near and far planes are positive values.
Camera Space → ND Space

• For the normalized device space, we transform the view frustum into a cube \([-1, 1]^3\).

• We want to flip the z axis, because our near and far planes are positive values.

• This is the job for the projection matrix together with the point normalization.
Camera Space → ND Space

\[
\text{projectionMatrix} \cdot \text{viewMatrix} \cdot \text{modelMatrix} \cdot \mathbf{v}
\]

\[
P \cdot V \cdot M \cdot \mathbf{v}
\]
Orthographic Projection

- We define our view volume with the values for left, right, top, bottom, near and far planes.
Orthographic Projection

- We define our view volume with the values for left, right, top, bottom, near and far planes.

```javascript
OrthographicCamera( left, right, top, bottom, near, far )
```

left — Camera frustum left plane.
right — Camera frustum right plane.
top — Camera frustum top plane.
bottom — Camera frustum bottom plane.
near — Camera frustum near plane.
far — Camera frustum far plane.

Together these define the camera’s viewing frustum.

From Three.js docs.
Orthographic Projection

- We define our view volume with the values for left, right, top, bottom, near and far planes.

- What would be the matrix that transforms the *orthographic view volume* into the *canonical view volume* $([-1, 1]^3)$?
Perspective Projection

• Usually defined by the **vertical angle** for the field-of-view (**FOV**), the **aspect ratio** and the **near** and **far** planes.
Perspective Projection

- Usually defined by the vertical angle for the field-of-view (FOV), the aspect ratio and the near and far planes.

- Find the left, right, top and bottom on the near plane, when the projection is symmetric?

\[
\begin{align*}
top &= -bottom \\
left &= -right
\end{align*}
\]
Perspective Projection

- Differently from the orthographic projection, here we have a viewer located in a single point.
- Similarly we want to find the normalized device coordinates for all points inside the view volume.
Perspective Projection

• First find and then map the x and y coordinates of the projected point to the correct range using similar triangles.
Perspective Projection

\[P = \begin{pmatrix}
 \frac{\text{near}}{\text{right}} & 0 & 0 & 0 \\
 0 & \frac{\text{near}}{\text{top}} & 0 & 0 \\
 0 & 0 & -1 & 0
\end{pmatrix} \]

- If the third row would be \((0, 0, 1, 0)\), then all \(z\) coordinates become -1 (because we found the projected coordinates on the near plane)
Perspective Projection

- We want to map the z value from the range [near, far] to the range [-1, 1].
- We can use scale and translation.

$$P = \begin{pmatrix}
\text{near} & 0 & 0 & 0 \\
\text{right} & 0 & 0 & 0 \\
0 & \text{near} & 0 & 0 \\
0 & 0 & s & t \\
0 & 0 & -1 & 0
\end{pmatrix}$$
Perspective Projection

- We want to map the z value from the range $[\text{near, far}]$ to the range $[-1, 1]$, so...

\[
\begin{align*}
 s \cdot \text{near} + t &= -1 \\
 s \cdot \text{far} + t &= 1
\end{align*}
\]

Can this be solved for s and t?

\[
P = \begin{pmatrix}
 \frac{\text{near}}{\text{right}} & 0 & 0 & 0 \\
 \frac{\text{near}}{\text{top}} & 0 & 0 & 0 \\
 0 & 0 & s & t \\
 0 & 0 & -1 & 0
\end{pmatrix}
\]
Perspective Projection

- After applying this matrix and doing the point normalization (dividing with \(w \)), you have the perspective projection.

\[
P = \begin{bmatrix}
\frac{\text{near}}{\text{right}} & 0 & 0 & 0 \\
0 & \frac{\text{near}}{\text{top}} & 0 & 0 \\
0 & 0 & -\frac{\text{far} + \text{near}}{\text{far} - \text{near}} & -\frac{2 \cdot \text{far} \cdot \text{near}}{\text{far} - \text{near}} \\
0 & 0 & -1 & 0
\end{bmatrix}
\]
Perspective Projection

- When using the FOV (α) and aspect ratio (ar).

$$P = \begin{bmatrix}
1 & 0 & 0 & 0 \\
\frac{1}{ar \cdot \tan\left(\frac{\alpha}{2}\right)} & 0 & 0 & 0 \\
0 & \frac{1}{\tan\left(\frac{\alpha}{2}\right)} & 0 & 0 \\
0 & 0 & \frac{far + near}{far - near} & -\frac{2 \cdot far \cdot near}{far - near} \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$
Clip Space

- After the projection matrix multiplication and before the w-division, vertices are in a *clip space*.

Read more here: https://stackoverflow.com/a/21841924/3067608
Clip Space

- After the projection matrix multiplication and before the \(w \)-division, vertices are in a *clip space*.
- That is the space, where it is the most easiest to determine, which triangles need to be clipped or culled.

Read more here: https://stackoverflow.com/a/21841924/3067608
Clip Space

- After the projection matrix multiplication and before the w-division, vertices are in a clip space.
- That is the space, where it is the most easiest to determine, which triangles need to be clipped or culled.
- **Clipping** – performed when some part of the triangle is inside the view volume.

Read more here: https://stackoverflow.com/a/21841924/3067608
Clip Space

- After the projection matrix multiplication and before the w-division, vertices are in a *clip space*.

- That is the space, where it is the most easiest to determine, which triangles need to be clipped or culled.

- **Clipping** – performed when some part of the triangle is inside the view volume.

- **Culling** – performed when the triangle is not inside the view volume. Or is back-facing.

Read more here: https://stackoverflow.com/a/21841924/3067608
ND Space → Screen Space

- We have everything we want to show now in the \([-1, 1]^3\) cube (normalized device space).
ND Space → Screen Space

- We have everything we want to show now in the $[-1, 1]^3$ cube (normalized device space).
- We also know the correct relative depth of the vertices.

Before the perspective projection
ND Space \rightarrow Screen Space

- We have everything we want to show now in the $[-1, 1]^3$ cube (normalized device space).
- We also know the correct relative depth of the vertices.

After the perspective projection
ND Space → Screen Space

- We have everything we want to show now in the $[-1, 1]^3$ cube (normalized device space).
- We also know the correct relative depth of the vertices.

This will not happen!
ND Space → Screen Space

- We have everything we want to show now in the $[-1, 1]^3$ cube (normalized device space).
- We also know the correct relative depth of the vertices.
- How to know where to draw on the screen?

Come up with that matrix...
ND Space → Screen Space

• This is done for you, the matrix is constructed when you specify the viewport size.

Three.js
renderer = new THREE.WebGLRenderer();
renderer.setSize(width, height);

OpenGL + GLFW
win = glfwCreateWindow(width, height,
"Hello GLFW!", NULL, NULL)
Overall

Object Space
Overall

Object Space → World Space
Overall

Object Space → World Space → Camera (View) Space
Overall

Object Space \rightarrow World Space \rightarrow

\rightarrow Camera (View) Space

Light calculations are usually in this space!
Overall

Camera (View) Space \rightarrow Normalized Device Space
Overall

→

Normalized Device Space

→

Screen Space
Overall

• Vertex shader must return homogeneous coordinates in the clip space – that is in normalized device space without the w-division.

```glsl
gl_Position = projection * view * model * vec4(position, 1.0);
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
gl_Position = modelViewProjectionMatrix * vec4(position, 1.0);
```
Overall

- Vertex shader must return homogeneous coordinates in the clip space – that is in normalized device space without the \(w \)-division.

\[
\text{gl_Position} = \text{projection} \ast \text{view} \ast \text{model} \ast \text{vec4(position, 1.0)};
\]

\[
\text{gl_Position} = \text{projectionMatrix} \ast \text{modelViewMatrix} \ast \text{vec4(position, 1.0)};
\]

\[
\text{gl_Position} = \text{modelViewProjectionMatrix} \ast \text{vec4(position, 1.0)};
\]

- Then GPU does:
 - \(w \)-division
 - Screen space transformation
Additional Links

• General overview: http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

• How to derive the view matrix: http://3dgep.com/understanding-the-view-matrix/

• How to derive the projection matrices: http://www.songho.ca/opengl/gl_projectionmatrix.html

• About transforming the surface normals: http://www.lighthouse3d.com/tutorials/glsl-tutorial/the-normal-matrix/
What was interesting for you today?

What more would you like to know?

Next time

Shading and Lighting