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The Road So Far...

mtllib triangle.mtl
o Plane
v 1.007839 0.000000 -1.000000
v 1.000000 0.000000 0.978599
v -1.000000 0.000000 -0.588960
usemtl None
s off
f 3 2 1
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Procedural Generation

● Generating objects algorithmically
● Mesh (geometry)
● Material (texture)
● Effects (particles)

Custom B. Chopper solution by Siim Raudsepp
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Procedural Generation

● Generating objects algorithmically
● Mesh (geometry)
● Material (texture)
● Effects (particles)
● Animation

Inverse kinematics
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Procedural Generation

● Generating objects algorithmically
● Mesh (geometry)
● Material (texture)
● Effects (particles)
● Animation
● Worlds

Procedural Infinite Terrain Generation (BSc thesis) by Andreas Sepp

https://comserv.cs.ut.ee/ati_thesis/datasheet.php?id=53657&year=2016&language=en
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Procedural Generation

● Generating objects algorithmically
● Mesh (geometry)
● Material (texture)
● Effects (particles)
● Animation
● Worlds

Infinite Procedural Infrastructured World Generation (MSc thesis) by Andreas Sepp

https://comserv.cs.ut.ee/ati_thesis/datasheet.php?id=62135&year=2018&language=en
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Procedural Generation

● Generating objects algorithmically
● Mesh (geometry)
● Material (texture)
● Effects (particles)
● Animation
● Worlds
● Characters, weapons, space ships, ...

NPC Generator 
by Jaanus Jaggo
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Procedural Generation

● Generating objects algorithmically
● Mesh (geometry)
● Material (texture)
● Effects (particles)
● Animation
● Worlds
● Characters, weapons, space ships, ...

● More content, less repetative work for artists
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Tree

● Let's try to generate a tree branch structure.
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Tree

● Let's try to generate a tree branch structure.
● We start with a trunk.
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Tree

● From the trunk, we create two branches for 
either side.

● We also continue on the forward path.
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Tree

● We repeat the process for the new segments.
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Tree

● We repeat the same process for all of the new 
segments.
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Tree

● Decrease the length of the segments each time.
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Tree

● Repeat again the same process.
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Tree

● Introduce randomness.

Show this in action...
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Tree

● What if we want to store the generated structure?
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Tree

● What if we want to store the generated structure?
● For example, this smaller tree:
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Tree

● What if we want to store the generated structure?
● For example, this smaller tree:
● We should specify the strucutre

and the parameters (length, angle).
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Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols    .
● Set of terminal symbols    .
● Set of production rules.

N
Σ

Rules tell you what nonterminals can be replaced 

with other nonterminals or terminals.
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Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols    .
● Set of terminal symbols    .
● Set of production rules.
● Starting axiom.

N
Σ

The initial „word“ of symbols / system state.
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Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols    .
● Set of terminal symbols    .
● Set of production rules.
● Starting axiom.

● Example:

N
Σ

N={A}

Σ={a}

R={A→AA
A→a }

Axiom=A

A→AA→aA→aa

Generates words

A→a
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Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols    .
● Set of terminal symbols    .
● Set of production rules.
● Starting axiom.

● Example:

N
Σ

N={A}

Σ={a}

R={A→AA
A→a }

Axiom=A

A→AA→AAA→aAA→aaA→aaa

Generates words

A→a
A→AA→aA→aa



41 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols    .
● Set of terminal symbols    .
● Set of production rules.
● Starting axiom.

● Example:

N
Σ

N={A}

Σ={a}

R={A→AA
A→a }

Axiom=A

A→AA→AAA→aAA→aaA→aaa

Generates words

...

A→a
A→AA→aA→aa
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Formal Grammar (Chomsky)

● Used for:
● Natural language processing
● Program code processing (compiler, interpreter)

● Hierarchy of types
● Type 0: Unrestricted – 
● Type 1: Context sensitive – non-terminal symbol 

on the left side, can be surrounded by a context
● Type 2: Context free – left side contains only a 

single non-terminal symbol
● Type 3: Regular – right side is empty, single 

terminal, or single terminal follower by non-terminal

N=Σ



49 / 91

Lindenmayer System

● Variant of a formal grammar.
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Lindenmayer System

● Variant of a formal grammar.
● Parallel rewriting system.
● We will look at one, that is:

● Bracketed system.
● Stochastic system.
● Context free (0L-system).
● Parametric system.

Because of that, does 

not fall directly under 

Chomsky's hierarcy
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Lindenmayer System

● Bracketed system – we use brackets to 
indicate branches.
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Lindenmayer System

● Bracketed system – we use brackets to 
indicate branches.

● Using following symbols:

Symbol Meaning

F Segment

+ Rotate left 45°

- Rotate right 45°

[ Start of a branch

] End of a branch

Can we write our tree using those?
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Lindenmayer System

● Parallel rewriting system – all the rules will be 
applied in parallel to rewrite the entire word.
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Lindenmayer System

● Parallel rewriting system – all the rules will be 
applied in parallel to rewrite the entire word.

What would be the rules to create the following?

Axiom: F 1. iteration: F[+F][-F]F

2. iteration: 
F[+F[+F][-F]F]
  [-F[+F][-F]F]
  F[+F][-F]F
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Lindenmayer System

● Parallel rewriting system – all the rules will be 
applied in parallel to rewrite the entire word.

What would be the rules to create the following?

Axiom: F 1. iteration: F[+F][-F]F

2. iteration: 
F[+F[+F][-F]F]
  [-F[+F][-F]F]
  F[+F][-F]FThis is a 

trick question.
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Lindenmayer System

● Parametric system – we can specify parameters 
for some of the symbols.
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Lindenmayer System

● Parametric system – we can specify parameters 
for some of the symbols.
● The length, the angle etc
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Lindenmayer System

F[+(45)F[+(45)F][-(45)F]F]
  [-(45)F[+(45)F][-(45)F]F]
  F[+(45)F][-(45)F]F

Every + or - is followed by 

the angle of rotation.

● Parametric system – we can specify parameters 
for some of the symbols.
● The length, the angle etc
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Lindenmayer System

● We can generate angles with some variance.

F[+(31.24)F][-(47.89)F]F
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Lindenmayer System

● We can generate angles with some variance.
● Also specify the lengths of the segments.

F(1)[+(31.24)F(0.75)][-(47.89)F(0.75)]F(0.75)
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Lindenmayer System

● We can generate angles with some variance.
● Also specify the lengths of the segments.

F(1)[+(31.24)F(0.75)][-(47.89)F(0.75)]F(0.75)

If the decrease of lengths is 
deterministic, we could consider 
it only, when drawing the tree...
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Lindenmayer System

● Stochastic system – we can have many rules, 
with the same left-hand side. 

A→F[+A]A

A→F[-A]A

A→F[+A][-A]
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Lindenmayer System

● Stochastic system – we can have many rules, 
with the same left-hand side. 

● Each rule has a probability. 

A →
1 /3

F[+A]A

A →
1 /3

F[-A]A

A →
1 /3

F[+A][-A]
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Lindenmayer System

● Stochastic system – we can have many rules, 
with the same left-hand side. 

● Each rule has a probability. 
● The sum of the probabilities of all the rules, 

with the same left-hand side, has to be 1.

A →
1 /3

F[+A]A

A →
1 /3

F[-A]A

A →
1 /3

F[+A][-A]
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Lindenmayer System

● Rigorous way to specify a mechanism for a 
self-similar structure generation.
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Lindenmayer System

● Rigorous way to specify a mechanism for a 
self-similar structure generation.

● Lot of research and different possibilities.
● The Algorithmic Beauty of Plants, 

A. Lindenmayer, P. Prusinkiewicz.
http://algorithmicbotany.org/papers/abop/abop.pdf 

http://algorithmicbotany.org/papers/abop/abop.pdf
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Lindenmayer System

● Rigorous way to specify a mechanism for a 
self-similar structure generation.

● Lot of research and different possibilities.
● The Algorithmic Beauty of Plants, 

A. Lindenmayer, P. Prusinkiewicz.
http://algorithmicbotany.org/papers/abop/abop.pdf 

● Try out 2D online:
http://www.kevs3d.co.uk/dev/lsystems/ 

http://algorithmicbotany.org/papers/abop/abop.pdf
http://www.kevs3d.co.uk/dev/lsystems/
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Lindenmayer System

● Rigorous way to specify a mechanism for a 
self-similar structure generation.

● Lot of research and different possibilities.
● The Algorithmic Beauty of Plants, 

A. Lindenmayer, P. Prusinkiewicz.
http://algorithmicbotany.org/papers/abop/abop.pdf 

● Try out 2D online:
http://www.kevs3d.co.uk/dev/lsystems/ 

● Questions?

http://algorithmicbotany.org/papers/abop/abop.pdf
http://www.kevs3d.co.uk/dev/lsystems/


80 / 91

Particle System

● Used for different effects
● Fire, fluid, wind, smoke
● Precipitation (rain, snow)
● Groups of objects with behaviour (birds, NPC-s)

This you did in the 

Soft Particle Chopper.
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Particle System
● Particles can have a transparency that varies 

over time.
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Particle System
● Particles can have a transparency that varies 

over time.
● Particles can be generated from an object pool.

● If a particle dies, return it to the object pool.

● Particle can be 1 pixel in size, or have an image.
● Particle system has an emmitter of particles.

Emitter can also be a line, 
a surface, a volume etc.
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Boids Algorithm
● Used to model flocking (eg of birds).
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Boids Algorithm
● Used to model flocking (eg of birds).
● Each particle follows a set of rules:

● Cohesion – Move towards the center of mass.
● Separation – Keep distance from other particles.
● Alignment – Follow the average direction.

● There can be other rules.
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Particle Systems

● Blender has particle systems

● Example of scar generation via particles:
https://www.youtube.com/watch?v=e3FpG3CFlfQ  

https://www.youtube.com/watch?v=e3FpG3CFlfQ
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What was new for you today?

What more would you like to know?

Next time: Ray Casting, Ray Tracing, 

Space Partitioning, BVH
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