
Computer Graphics
MTAT.03.015

Raimond Tunnel

2 / 91

The Road So Far...

mtllib triangle.mtl
o Plane
v 1.007839 0.000000 -1.000000
v 1.000000 0.000000 0.978599
v -1.000000 0.000000 -0.588960
usemtl None
s off
f 3 2 1

3 / 91

Procedural Generation

● Generating objects algorithmically

4 / 91

Procedural Generation

● Generating objects algorithmically
● Mesh (geometry)

5 / 91

Procedural Generation

● Generating objects algorithmically
● Mesh (geometry)
● Material (texture)

6 / 91

Procedural Generation

● Generating objects algorithmically
● Mesh (geometry)
● Material (texture) Combination

7 / 91

Procedural Generation

● Generating objects algorithmically
● Mesh (geometry)
● Material (texture)
● Effects (particles)

Custom B. Chopper solution by Siim Raudsepp

8 / 91

Procedural Generation

● Generating objects algorithmically
● Mesh (geometry)
● Material (texture)
● Effects (particles)
● Animation

Inverse kinematics

9 / 91

Procedural Generation

● Generating objects algorithmically
● Mesh (geometry)
● Material (texture)
● Effects (particles)
● Animation
● Worlds

Procedural Infinite Terrain Generation (BSc thesis) by Andreas Sepp

https://comserv.cs.ut.ee/ati_thesis/datasheet.php?id=53657&year=2016&language=en

10 / 91

Procedural Generation

● Generating objects algorithmically
● Mesh (geometry)
● Material (texture)
● Effects (particles)
● Animation
● Worlds

Infinite Procedural Infrastructured World Generation (MSc thesis) by Andreas Sepp

https://comserv.cs.ut.ee/ati_thesis/datasheet.php?id=62135&year=2018&language=en

11 / 91

Procedural Generation

● Generating objects algorithmically
● Mesh (geometry)
● Material (texture)
● Effects (particles)
● Animation
● Worlds
● Characters, weapons, space ships, ...

NPC Generator
by Jaanus Jaggo

12 / 91

Procedural Generation

● Generating objects algorithmically
● Mesh (geometry)
● Material (texture)
● Effects (particles)
● Animation
● Worlds
● Characters, weapons, space ships, ...

● More content, less repetative work for artists

13 / 91

Tree

● Let's try to generate a tree branch structure.

14 / 91

Tree

● Let's try to generate a tree branch structure.
● We start with a trunk.

15 / 91

Tree

● From the trunk, we create two branches for
either side.

● We also continue on the forward path.

16 / 91

Tree

● We repeat the process for the new segments.

17 / 91

Tree

● We repeat the same process for all of the new
segments.

18 / 91

Tree

● Decrease the length of the segments each time.

19 / 91

Tree

● Repeat again the same process.

20 / 91

Tree

● Introduce randomness.

Show this in action...

21 / 91

Tree

● What if we want to store the generated structure?

22 / 91

Tree

● What if we want to store the generated structure?
● For example, this smaller tree:

23 / 91

Tree

● What if we want to store the generated structure?
● For example, this smaller tree:
● We should specify the strucutre

and the parameters (length, angle).

24 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .N

25 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .N

Nonterminals can be changed by production rules.

26 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .N

Nonterminals can be changed by production rules.

They do not „terminate“ the derivation.

27 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .
● Set of terminal symbols .

N
Σ

28 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .
● Set of terminal symbols .

N
Σ

Terminals can not be changed by production rules.

29 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .
● Set of terminal symbols .

N
Σ

They do „terminate“ the derivation.

Terminals can not be changed by production rules.

30 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .
● Set of terminal symbols .
● Set of production rules.

N
Σ

31 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .
● Set of terminal symbols .
● Set of production rules.

N
Σ

Rules tell you what nonterminals can be replaced

with other nonterminals or terminals.

32 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .
● Set of terminal symbols .
● Set of production rules.
● Starting axiom.

N
Σ

33 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .
● Set of terminal symbols .
● Set of production rules.
● Starting axiom.

N
Σ

The initial „word“ of symbols / system state.

34 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .
● Set of terminal symbols .
● Set of production rules.
● Starting axiom.

● Example:

N
Σ

N={A}

35 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .
● Set of terminal symbols .
● Set of production rules.
● Starting axiom.

● Example:

N
Σ

N={A}

Σ={a}

36 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .
● Set of terminal symbols .
● Set of production rules.
● Starting axiom.

● Example:

N
Σ

N={A}

Σ={a}

R={A→AA
A→a }

37 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .
● Set of terminal symbols .
● Set of production rules.
● Starting axiom.

● Example:

N
Σ

N={A}

Σ={a}

R={A→AA
A→a }

Axiom=A

38 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .
● Set of terminal symbols .
● Set of production rules.
● Starting axiom.

● Example:

N
Σ

N={A}

Σ={a}

R={A→AA
A→a }

Axiom=A
A→a

Generates words

39 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .
● Set of terminal symbols .
● Set of production rules.
● Starting axiom.

● Example:

N
Σ

N={A}

Σ={a}

R={A→AA
A→a }

Axiom=A

A→AA→aA→aa

Generates words

A→a

40 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .
● Set of terminal symbols .
● Set of production rules.
● Starting axiom.

● Example:

N
Σ

N={A}

Σ={a}

R={A→AA
A→a }

Axiom=A

A→AA→AAA→aAA→aaA→aaa

Generates words

A→a
A→AA→aA→aa

41 / 91

Formal Grammar (Chomsky)
● Formal grammar consists of:

● Set of nonterminal symbols .
● Set of terminal symbols .
● Set of production rules.
● Starting axiom.

● Example:

N
Σ

N={A}

Σ={a}

R={A→AA
A→a }

Axiom=A

A→AA→AAA→aAA→aaA→aaa

Generates words

...

A→a
A→AA→aA→aa

42 / 91

Formal Grammar (Chomsky)

● Used for:

43 / 91

Formal Grammar (Chomsky)

● Used for:
● Natural language processing

44 / 91

Formal Grammar (Chomsky)

● Used for:
● Natural language processing
● Program code processing (compiler, interpreter)

45 / 91

Formal Grammar (Chomsky)

● Used for:
● Natural language processing
● Program code processing (compiler, interpreter)

● Hierarchy of types
● Type 0: Unrestricted – N=Σ

46 / 91

Formal Grammar (Chomsky)

● Used for:
● Natural language processing
● Program code processing (compiler, interpreter)

● Hierarchy of types
● Type 0: Unrestricted –
● Type 1: Context sensitive – non-terminal symbol

on the left side, can be surrounded by a context

N=Σ

47 / 91

Formal Grammar (Chomsky)

● Used for:
● Natural language processing
● Program code processing (compiler, interpreter)

● Hierarchy of types
● Type 0: Unrestricted –
● Type 1: Context sensitive – non-terminal symbol

on the left side, can be surrounded by a context
● Type 2: Context free – left side contains only a

single non-terminal symbol

N=Σ

48 / 91

Formal Grammar (Chomsky)

● Used for:
● Natural language processing
● Program code processing (compiler, interpreter)

● Hierarchy of types
● Type 0: Unrestricted –
● Type 1: Context sensitive – non-terminal symbol

on the left side, can be surrounded by a context
● Type 2: Context free – left side contains only a

single non-terminal symbol
● Type 3: Regular – right side is empty, single

terminal, or single terminal follower by non-terminal

N=Σ

49 / 91

Lindenmayer System

● Variant of a formal grammar.

50 / 91

Lindenmayer System

● Variant of a formal grammar.
● Parallel rewriting system.

51 / 91

Lindenmayer System

● Variant of a formal grammar.
● Parallel rewriting system.

Because of that, does

not fall directly under

Chomsky's hierarcy

52 / 91

Lindenmayer System

● Variant of a formal grammar.
● Parallel rewriting system.
● We will look at one, that is:

● Bracketed system.

Because of that, does

not fall directly under

Chomsky's hierarcy

53 / 91

Lindenmayer System

● Variant of a formal grammar.
● Parallel rewriting system.
● We will look at one, that is:

● Bracketed system.
● Stochastic system.

Because of that, does

not fall directly under

Chomsky's hierarcy

54 / 91

Lindenmayer System

● Variant of a formal grammar.
● Parallel rewriting system.
● We will look at one, that is:

● Bracketed system.
● Stochastic system.
● Context free (0L-system).

Because of that, does

not fall directly under

Chomsky's hierarcy

55 / 91

Lindenmayer System

● Variant of a formal grammar.
● Parallel rewriting system.
● We will look at one, that is:

● Bracketed system.
● Stochastic system.
● Context free (0L-system).
● Parametric system.

Because of that, does

not fall directly under

Chomsky's hierarcy

56 / 91

Lindenmayer System

● Bracketed system – we use brackets to
indicate branches.

57 / 91

Lindenmayer System

● Bracketed system – we use brackets to
indicate branches.

● Using following symbols:

Symbol Meaning

F Segment

+ Rotate left 45°

- Rotate right 45°

[Start of a branch

] End of a branch

Can we write our tree using those?

58 / 91

Lindenmayer System

● Parallel rewriting system – all the rules will be
applied in parallel to rewrite the entire word.

59 / 91

Lindenmayer System

● Parallel rewriting system – all the rules will be
applied in parallel to rewrite the entire word.

What would be the rules to create the following?

Axiom: F

60 / 91

Lindenmayer System

● Parallel rewriting system – all the rules will be
applied in parallel to rewrite the entire word.

What would be the rules to create the following?

Axiom: F 1. iteration: F[+F][-F]F

61 / 91

Lindenmayer System

● Parallel rewriting system – all the rules will be
applied in parallel to rewrite the entire word.

What would be the rules to create the following?

Axiom: F 1. iteration: F[+F][-F]F

2. iteration:
F[+F[+F][-F]F]
 [-F[+F][-F]F]
 F[+F][-F]F

62 / 91

Lindenmayer System

● Parallel rewriting system – all the rules will be
applied in parallel to rewrite the entire word.

What would be the rules to create the following?

Axiom: F 1. iteration: F[+F][-F]F

2. iteration:
F[+F[+F][-F]F]
 [-F[+F][-F]F]
 F[+F][-F]FThis is a

trick question.

63 / 91

Lindenmayer System

● Parametric system – we can specify parameters
for some of the symbols.

64 / 91

Lindenmayer System

● Parametric system – we can specify parameters
for some of the symbols.
● The length, the angle etc

65 / 91

Lindenmayer System

F[+(45)F[+(45)F][-(45)F]F]
 [-(45)F[+(45)F][-(45)F]F]
 F[+(45)F][-(45)F]F

Every + or - is followed by

the angle of rotation.

● Parametric system – we can specify parameters
for some of the symbols.
● The length, the angle etc

66 / 91

Lindenmayer System

● We can generate angles with some variance.

F[+(31.24)F][-(47.89)F]F

67 / 91

Lindenmayer System

● We can generate angles with some variance.
● Also specify the lengths of the segments.

F(1)[+(31.24)F(0.75)][-(47.89)F(0.75)]F(0.75)

68 / 91

Lindenmayer System

● We can generate angles with some variance.
● Also specify the lengths of the segments.

F(1)[+(31.24)F(0.75)][-(47.89)F(0.75)]F(0.75)

If the decrease of lengths is
deterministic, we could consider
it only, when drawing the tree...

69 / 91

Lindenmayer System

● Stochastic system – we can have many rules,
with the same left-hand side.

A→F[+A]A

A→F[-A]A

A→F[+A][-A]

70 / 91

Lindenmayer System

● Stochastic system – we can have many rules,
with the same left-hand side.

● Each rule has a probability.

A →
1 /3

F[+A]A

A →
1 /3

F[-A]A

A →
1 /3

F[+A][-A]

71 / 91

Lindenmayer System

● Stochastic system – we can have many rules,
with the same left-hand side.

● Each rule has a probability.
● The sum of the probabilities of all the rules,

with the same left-hand side, has to be 1.

A →
1 /3

F[+A]A

A →
1 /3

F[-A]A

A →
1 /3

F[+A][-A]

72 / 91

Lindenmayer System

● Rigorous way to specify a mechanism for a
self-similar structure generation.

73 / 91

Lindenmayer System

● Rigorous way to specify a mechanism for a
self-similar structure generation.

recursive

74 / 91

Lindenmayer System

● Rigorous way to specify a mechanism for a
self-similar structure generation.

recursive

fractal?

75 / 91

Lindenmayer System

● Rigorous way to specify a mechanism for a
self-similar structure generation.

recursive

fractal?

76 / 91

Lindenmayer System

● Rigorous way to specify a mechanism for a
self-similar structure generation.

● Lot of research and different possibilities.

77 / 91

Lindenmayer System

● Rigorous way to specify a mechanism for a
self-similar structure generation.

● Lot of research and different possibilities.
● The Algorithmic Beauty of Plants,

A. Lindenmayer, P. Prusinkiewicz.
http://algorithmicbotany.org/papers/abop/abop.pdf

http://algorithmicbotany.org/papers/abop/abop.pdf

78 / 91

Lindenmayer System

● Rigorous way to specify a mechanism for a
self-similar structure generation.

● Lot of research and different possibilities.
● The Algorithmic Beauty of Plants,

A. Lindenmayer, P. Prusinkiewicz.
http://algorithmicbotany.org/papers/abop/abop.pdf

● Try out 2D online:
http://www.kevs3d.co.uk/dev/lsystems/

http://algorithmicbotany.org/papers/abop/abop.pdf
http://www.kevs3d.co.uk/dev/lsystems/

79 / 91

Lindenmayer System

● Rigorous way to specify a mechanism for a
self-similar structure generation.

● Lot of research and different possibilities.
● The Algorithmic Beauty of Plants,

A. Lindenmayer, P. Prusinkiewicz.
http://algorithmicbotany.org/papers/abop/abop.pdf

● Try out 2D online:
http://www.kevs3d.co.uk/dev/lsystems/

● Questions?

http://algorithmicbotany.org/papers/abop/abop.pdf
http://www.kevs3d.co.uk/dev/lsystems/

80 / 91

Particle System

● Used for different effects
● Fire, fluid, wind, smoke
● Precipitation (rain, snow)
● Groups of objects with behaviour (birds, NPC-s)

This you did in the

Soft Particle Chopper.

81 / 91

Particle System
● Particles can have a transparency that varies

over time.

82 / 91

Particle System
● Particles can have a transparency that varies

over time.
● Particles can be generated from an object pool.

● If a particle dies, return it to the object pool.

83 / 91

Particle System
● Particles can have a transparency that varies

over time.
● Particles can be generated from an object pool.

● If a particle dies, return it to the object pool.

● Particle can be 1 pixel in size, or have an image.

84 / 91

Particle System
● Particles can have a transparency that varies

over time.
● Particles can be generated from an object pool.

● If a particle dies, return it to the object pool.

● Particle can be 1 pixel in size, or have an image.
● Particle system has an emmitter of particles.

Emitter can also be a line,
a surface, a volume etc.

85 / 91

Boids Algorithm
● Used to model flocking (eg of birds).

86 / 91

Boids Algorithm
● Used to model flocking (eg of birds).
● Each particle follows a set of rules:

● Cohesion – Move towards the center of mass.

87 / 91

Boids Algorithm
● Used to model flocking (eg of birds).
● Each particle follows a set of rules:

● Cohesion – Move towards the center of mass.
● Separation – Keep distance from other particles.

88 / 91

Boids Algorithm
● Used to model flocking (eg of birds).
● Each particle follows a set of rules:

● Cohesion – Move towards the center of mass.
● Separation – Keep distance from other particles.
● Alignment – Follow the average direction.

89 / 91

Boids Algorithm
● Used to model flocking (eg of birds).
● Each particle follows a set of rules:

● Cohesion – Move towards the center of mass.
● Separation – Keep distance from other particles.
● Alignment – Follow the average direction.

● There can be other rules.

90 / 91

Particle Systems

● Blender has particle systems

● Example of scar generation via particles:
https://www.youtube.com/watch?v=e3FpG3CFlfQ

https://www.youtube.com/watch?v=e3FpG3CFlfQ

91 / 91

What was new for you today?

What more would you like to know?

Next time: Ray Casting, Ray Tracing,

Space Partitioning, BVH

	Slaid 1
	Slaid 2
	Slaid 3
	Slaid 4
	Slaid 5
	Slaid 6
	Slaid 7
	Slaid 8
	Slaid 9
	Slaid 10
	Slaid 11
	Slaid 12
	Slaid 13
	Slaid 14
	Slaid 15
	Slaid 16
	Slaid 17
	Slaid 18
	Slaid 19
	Slaid 20
	Slaid 21
	Slaid 22
	Slaid 23
	Slaid 24
	Slaid 25
	Slaid 26
	Slaid 27
	Slaid 28
	Slaid 29
	Slaid 30
	Slaid 31
	Slaid 32
	Slaid 33
	Slaid 34
	Slaid 35
	Slaid 36
	Slaid 37
	Slaid 38
	Slaid 39
	Slaid 40
	Slaid 41
	Slaid 42
	Slaid 43
	Slaid 44
	Slaid 45
	Slaid 46
	Slaid 47
	Slaid 48
	Slaid 49
	Slaid 50
	Slaid 51
	Slaid 52
	Slaid 53
	Slaid 54
	Slaid 55
	Slaid 56
	Slaid 57
	Slaid 58
	Slaid 59
	Slaid 60
	Slaid 61
	Slaid 62
	Slaid 63
	Slaid 64
	Slaid 65
	Slaid 66
	Slaid 67
	Slaid 68
	Slaid 69
	Slaid 70
	Slaid 71
	Slaid 72
	Slaid 73
	Slaid 74
	Slaid 75
	Slaid 76
	Slaid 77
	Slaid 78
	Slaid 79
	Slaid 80
	Slaid 81
	Slaid 82
	Slaid 83
	Slaid 84
	Slaid 85
	Slaid 86
	Slaid 87
	Slaid 88
	Slaid 89
	Slaid 90
	Slaid 91

