Computer Graphics
 MTAT.03.015

Raimond Tunnel

The Road So Far...

Bounding Box

- With bounding boxes you can detect collisions between boxes.

Bounding Box

- With bounding boxes you can detect collisions between boxes.
- Our hangar just happens to be a box.

Bounding Box

- With bounding boxes you can detect collisions between boxes.
- Our hangar just happens to be a box.
- The chopper is not a box, but the collision approximation with a bounding box seems ok.

Bounding Box

- With bounding boxes you can detect collisions between boxes.
- Our hangar just happens to be a box.
- The chopper is not a box, but the collision approximation with a bounding box seems ok.
- The bounding box is axis-aligned.

Bounding Box

- With bounding boxes you can detect collisions between boxes.
- Our hangar just happens to be a box.
- The chopper is not a box, but the collision approximation with a bounding box seems ok.
- The bounding box is axis-aligned.
- Some of you wrote 4 if-statements. That is a (kind of) bounding box collision detection for those specific boxes (around chopper, the hangar).

Collision Detection

- What if the hangar walls were rotated? Can not assume that all walls are always axis-aligned..

Collision Detection

- What if the hangar walls were rotated? Can not assume that all walls are always axis-aligned.
-What if the chopper was rotated?

Collision Detection

- What if the hangar walls were rotated? Can not assume that all walls are always axis-aligned.
- What if the chopper rotated?
- The rotating blades actually would need a cylinder to minimally bound them.

Collision Detection

- What if the hangar walls were rotated? Can not assume that all walls are always axis-aligned.
- What if the chopper rotated?
- The rotating blades actually would need a cylinder to minimally bound them.
- Bounding objects provide a fast and rough approximation.

Ray Casting

- Cast rays out of some vertices, following the vertex normal.

Ray Casting

- Detect the first hit of ray and scene geometry.

Ray Casting

- Detect the first hit of ray and scene geometry.
- Measure the distance from the vertex to the hit.

Ray Casting

- Detect the first hit of ray and scene geometry.
- Measure the distance from the vertex to the hit.
- If the distance is too small, change the chopper's position, speed, acceleation, in order to avoid a collision.

Ray Casting

- Detect the first hit of ray and scene geometry.
- Measure the distance from the vertex to the hit.
- If the distance is too small, change the chopper's position, speed, acceleation, in order to avoid a collision.
- Intersection testing:
- Intersection testing between a variety of objects: http://www.realtimerendering.com/intersections.html

Möller-Trumbore Ray Triangle

$\operatorname{Ray}(t)=$ Start $+t \cdot$ Direction
Direction

Möller-Trumbore Ray Triangle

- Ray $(t)=$ Start $+t \cdot$ Direction
- Triangle $(u, v)=v_{0}+u \cdot e_{0}+v \cdot e_{1}$

Möller-Trumbore Ray Triangle

- Ray $(t)=$ Start $+t \cdot$ Direction
- Triangle $(u, v)=v_{0}+u \cdot e_{0}+v \cdot e_{1}$
- The u and v are actually Barycentric coordinates of vertices v_{1} and v_{2}.

Möller-Trumbore Ray Triangle

- Ray $(t)=$ Start $+t \cdot$ Direction
- Triangle $(u, v)=v_{0}+u \cdot e_{0}+v \cdot e_{1}$
- The u and v are actually Barycentric coordinates of vertices v_{1} and v_{2}.
- What is the coordinate of v_{0} ?

Möller-Trumbore Ray Triangle

- Ray $(t)=$ Start $+t \cdot$ Direction
- Triangle $(u, v)=v_{0}+u \cdot e_{0}+v \cdot e_{1}$
- The u and v are actually Barycentric coordinates of vertices v_{1} and v_{2}.
- What is the coordinate of v_{0} ?
- Goal is to find a solution to

Möller-Trumbore Ray Triangle

- Ray $(t)=$ Start $+t \cdot$ Direction
- Triangle $(u, v)=v_{0}+u \cdot e_{0}+v \cdot e_{1}$

- The u and v are actually Barycentric coordinates of vertices v_{1} and v_{2}.
- What is the coordinate of v_{0} ?
- Goal is to find a solution to
 the following equation:
$\operatorname{Ray}(t)=\operatorname{Start}+t \cdot$ Direction $=v_{0}+u \cdot e_{0}+v \cdot e_{1}=\operatorname{Triangle}(u, v)$

Möller-Trumbore Ray Triangle

- Let us call S the Start and D the Direction.

Möller-Trumbore Ray Triangle

- Let us call S the Start and D the Direction.
- We can rearrange the terms to see better.

$$
S+t \cdot D=(1-u-v) v_{0}+u \cdot v_{1}+v \cdot v_{2}
$$

Möller-Trumbore Ray Triangle

- Let us call S the Start and D the Direction.
- We can rearrange the terms to see better.

$$
\begin{aligned}
& S+t \cdot D=(1-u-v) v_{0}+u \cdot v_{1}+v \cdot v_{2} \\
& S-v_{0}=u \cdot\left(v_{1}-v_{0}\right)+v \cdot\left(v_{2}-v_{0}\right)-t \cdot D
\end{aligned}
$$

Moving the constant values to one side...

Parameteres to the other side...

Möller-Trumbore Ray Triangle

- Let us call S the Start and D the Direction.
- We can rearrange the terms to see better.

$$
\begin{aligned}
& S+t \cdot D=(1-u-v) v_{0}+u \cdot v_{1}+v \cdot v_{2} \\
& S-v_{0}=u \cdot\left(v_{1}-v_{0}\right)+v \cdot\left(v_{2}-v_{0}\right)-t \cdot D
\end{aligned}
$$

Parameteres to the other side...

Möller-Trumbore Ray Triangle

- Let us call S the Start and D the Direction.
- We can rearrange the terms to see better.

$$
\begin{aligned}
& S+t \cdot D=(1-u-v) v_{0}+u \cdot v_{1}+v \cdot v_{2} \\
& S-v_{0}=u \cdot\left(v_{1}-v_{0}\right)+v \cdot\left(v_{2}-v_{0}\right)-t \cdot D \\
& \left(\left(v_{1}-v_{0}\right) \quad\left(v_{2}-v_{0}\right)-D\right) \cdot\left(\begin{array}{l}
u \\
v \\
t
\end{array}\right)=S-v_{0}
\end{aligned}
$$

Converting into vector form

Möller-Trumbore Ray Triangle

- Let us call S the Start and D the Direction.
- We can rearrange the terms to see better.

$$
\begin{aligned}
& S+t \cdot D=(1-u-v) v_{0}+u \cdot v_{1}+v \cdot v_{2} \\
& S-v_{0}=u \cdot\left(v_{1}-v_{0}\right)+v \cdot\left(v_{2}-v_{0}\right)-t \cdot D \\
& \left(\left(v_{1}-v_{0}\right) \quad\left(v_{2}-v_{0}\right)-D\right) \cdot\left(\begin{array}{l}
u \\
v \\
t
\end{array}\right)=S-v_{0}
\end{aligned}
$$

- We are looking for the unknown vector

Möller-Trumbore Ray Triangle

- We are in 3D, so we have 3 equations for each

$$
\begin{aligned}
& \text { dimension. } \\
& \qquad\left(\begin{array}{lll}
e_{0} & e_{1} & -D
\end{array}\right) \cdot\left(\begin{array}{l}
u \\
v \\
t
\end{array}\right)=S-v_{0}
\end{aligned}
$$

Using the basis vectors for simpler writeup

Möller-Trumbore Ray Triangle

- We are in 3D, so we have 3 equations for each

$$
\begin{aligned}
& \text { dimension. } \\
& \qquad\left(\begin{array}{lll}
e_{0} & e_{1} & -D
\end{array}\right) \cdot\left(\begin{array}{l}
u \\
v \\
t
\end{array}\right)=S-v_{0}
\end{aligned}
$$

- Cramer's rule
$a_{0,0} \cdot x+a_{0,1} \cdot y+a_{0,2} \cdot z=b_{0}$

$$
x=\frac{\left|A_{x}\right|}{|A|} \quad y=\frac{\left|A_{y}\right|}{|A|} \quad z=\frac{\left|A_{z}\right|}{|A|}
$$

$a_{1,0} \cdot x+a_{1,1} \cdot y+a_{2,2} \cdot z=b_{1} \quad A_{x}$ - first column replaced by b
$a_{2,0} \cdot x+a_{2,1} \cdot y+a_{2,2} \cdot z=b_{2} \quad A_{y}$ - second column replaced by b
A_{z} - third column replaced by b

Möller-Trumbore Ray Triangle

- With Cramer's rule

$$
\left(\begin{array}{lll}
e_{0} & e_{1} & -D
\end{array}\right) \cdot\left(\begin{array}{l}
u \\
v \\
t
\end{array}\right)=S-v_{0}
$$

$$
u=\frac{\left|\begin{array}{lll}
S_{x}-v_{0 \mathrm{x}} & e_{1 \mathrm{x}} & -D_{x} \\
S_{y}-v_{0 \mathrm{y}} & e_{1 \mathrm{y}} & -D_{y} \\
S_{z}-v_{0 \mathrm{z}} & e_{1 \mathrm{z}} & -D_{z}
\end{array}\right|}{\left|\begin{array}{lll}
e_{0 \mathrm{x}} & e_{1 \mathrm{x}} & -D_{x} \\
e_{0 \mathrm{y}} & e_{1 \mathrm{y}} & -D_{y} \\
e_{0 \mathrm{z}} & e_{1 \mathrm{z}} & -D_{z}
\end{array}\right|}
$$

Möller-Trumbore Ray Triangle

- With Cramer's rule

$$
\left(\begin{array}{lll}
e_{0} & e_{1} & -D
\end{array}\right) \cdot\left(\begin{array}{l}
u \\
v \\
t
\end{array}\right)=S-v_{0}
$$

- Denote columns

$$
u=\frac{\left|\begin{array}{ccc}
S_{x}-v_{0 \mathrm{x}} & e_{1 \mathrm{x}} & -D_{x} \\
S_{y}-v_{0 \mathrm{y}} & e_{1 \mathrm{y}} & -D_{y} \\
S_{z}-v_{0 \mathrm{z}} & e_{1 \mathrm{z}} & -D_{z}
\end{array}\right|}{\left|\begin{array}{lll}
e_{0 \mathrm{x}} & e_{1 \mathrm{x}} & -D_{x} \\
e_{0 \mathrm{y}} & e_{1 \mathrm{y}} & -D_{y} \\
e_{0 \mathrm{z}} & e_{1 \mathrm{z}} & -D_{z}
\end{array}\right|}
$$

$$
\begin{aligned}
& b=S-v_{0} \\
& \left.u=\frac{\mid b}{b} e_{1}-D \right\rvert\, \\
& \mid e_{0} \\
& e_{1}
\end{aligned}-D \left\lvert\, \quad v=\frac{\left|\begin{array}{lll}
e_{0} & b & -D
\end{array}\right|}{\left|\begin{array}{lll}
e_{0} & e_{1} & -D
\end{array}\right|} \quad t=\frac{\left|\begin{array}{lll}
e_{0} & e_{1} & b
\end{array}\right|}{\left|\begin{array}{lll}
e_{0} & e_{1} & -D
\end{array}\right|}\right.
$$

How to find those determinants?

Möller-Trumbore Ray Triangle

- Scalar triple product: $a \cdot(b \times c)=\left|\begin{array}{lll}a & b & c\end{array}\right|$

Möller-Trumbore Ray Triangle

- Scalar triple product: $a \cdot(b \times c)=\left|\begin{array}{lll}a & b & c\end{array}\right|$

$$
u=\frac{b \cdot\left(e_{1} \times-D\right)}{e_{0} \cdot\left(e_{1} \times-D\right)} \quad v=\frac{e_{0} \cdot(b \times-D)}{e_{0} \cdot\left(e_{1} \times-D\right)} \quad t=\frac{e_{0} \cdot\left(e_{1} \times b\right)}{e_{0} \cdot\left(e_{1} \times-D\right)}
$$

Möller-Trumbore Ray Triangle

- Scalar triple product: $a \cdot(b \times c)=\left|\begin{array}{lll}a & b & c\end{array}\right|$

$$
u=\frac{b \cdot\left(e_{1} \times-D\right)}{e_{0} \cdot\left(e_{1} \times-D\right)} \quad v=\frac{e_{0} \cdot(b \times-D)}{e_{0} \cdot\left(e_{1} \times-D\right)} \quad t=\frac{e_{0} \cdot\left(e_{1} \times b\right)}{e_{0} \cdot\left(e_{1} \times-D\right)}
$$

- Anticommutativity of the cross product:

$$
u=\frac{b \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)}{e_{0} \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)} \quad v=\frac{e_{0} \cdot(D \times b)}{e_{0} \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)} \quad t=\frac{e_{0} \cdot\left(e_{1} \times b\right)}{e_{0} \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)}
$$

Möller-Trumbore Ray Triangle

- Scalar triple product: $a \cdot(b \times c)=\left|\begin{array}{lll}a & b & c\end{array}\right|$

$$
u=\frac{b \cdot\left(e_{1} \times-D\right)}{e_{0} \cdot\left(e_{1} \times-D\right)} \quad v=\frac{e_{0} \cdot(b \times-D)}{e_{0} \cdot\left(e_{1} \times-D\right)} \quad t=\frac{e_{0} \cdot\left(e_{1} \times b\right)}{e_{0} \cdot\left(e_{1} \times-D\right)}
$$

- Anticommutativity of the cross product:

$$
u=\frac{b \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)}{e_{0} \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)} \quad v=\frac{e_{0} \cdot(D \times b)}{e_{0} \cdot\left(\boldsymbol{D} \times e_{1}\right)} \quad t=\frac{e_{0} \cdot\left(e_{1} \times b\right)}{e_{0} \cdot\left(\boldsymbol{D} \times e_{1}\right)}
$$

- Circular shift invariance of scalar triple product

$$
v=\frac{D \cdot\left(\boldsymbol{b} \times \boldsymbol{e}_{0}\right)}{e_{0} \cdot\left(D \times e_{1}\right)} \quad t=\frac{e_{1} \cdot\left(\boldsymbol{b} \times \boldsymbol{e}_{0}\right)}{e_{0} \cdot\left(D \times e_{1}\right)}
$$

Möller-Trumbore Ray Triangle

- Scalar triple product: $a \cdot(b \times c)=\left|\begin{array}{lll}a & b & c\end{array}\right|$

$$
u=\frac{b \cdot\left(e_{1} \times-D\right)}{e_{0} \cdot\left(e_{1} \times-D\right)} \quad v=\frac{e_{0} \cdot(b \times-D)}{e_{0} \cdot\left(e_{1} \times-D\right)} \quad t=\frac{e_{0} \cdot\left(e_{1} \times b\right)}{e_{0} \cdot\left(e_{1} \times-D\right)}
$$

- Anticommutativity of the cross product:

$$
u=\frac{b \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)}{e_{0} \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)} \quad v=\frac{e_{0} \cdot(D \times b)}{e_{0} \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)} \quad t=\frac{e_{0} \cdot\left(e_{1} \times b\right)}{e_{0} \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)}
$$

- Circular shift invariance of scalar triple product

Think about the matrix elementary row operations...

$$
v=\frac{D \cdot\left(\boldsymbol{b} \times \boldsymbol{e}_{\mathbf{0}}\right)}{e_{0} \cdot\left(D \times e_{1}\right)} \quad t=\frac{e_{1} \cdot\left(\boldsymbol{b} \times \boldsymbol{e}_{\mathbf{0}}\right)}{e_{0} \cdot\left(D \times e_{1}\right)}
$$

Möller-Trumbore Ray Triangle

- We can calculate only two cross products

$$
u=\frac{b \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)}{e_{0} \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)} \quad v=\frac{D \cdot\left(\boldsymbol{b} \times \boldsymbol{e}_{\mathbf{0}}\right)}{e_{0} \cdot\left(\mathrm{D} \times \boldsymbol{e}_{1}\right)} \quad t=\frac{e_{1} \cdot\left(\boldsymbol{b} \times \boldsymbol{e}_{\mathbf{0}}\right)}{e_{0} \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)}
$$

Möller-Trumbore Ray Triangle

- We can calculate only two cross products

$$
\begin{array}{ll}
u=\frac{b \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)}{e_{0} \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)} \quad v=\frac{D \cdot\left(\boldsymbol{b} \times \boldsymbol{e}_{0}\right)}{e_{0} \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)} & t=\frac{e_{1} \cdot\left(\boldsymbol{b} \times \boldsymbol{e}_{\mathbf{0}}\right)}{e_{0} \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)} \\
u=\frac{b \cdot P}{\hat{P}} \quad v=\frac{D \cdot Q}{\hat{P}} \quad t=\frac{e_{1} \cdot Q}{\hat{P}} & \begin{array}{l}
Q=\left(b \times e_{0}\right) \\
\end{array} \\
& P=\left(D \times e_{1}\right) \\
\hat{P}=e_{0} \cdot P
\end{array}
$$

Möller-Trumbore Ray Triangle

- We can calculate only two cross products

$$
\begin{array}{ll}
u=\frac{b \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)}{e_{0} \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)} \quad v=\frac{D \cdot\left(\boldsymbol{b} \times \boldsymbol{e}_{0}\right)}{e_{0} \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)} \quad t=\frac{e_{1} \cdot\left(\boldsymbol{b} \times \boldsymbol{e}_{0}\right)}{e_{0} \cdot\left(\boldsymbol{D} \times \boldsymbol{e}_{1}\right)} \\
u=\frac{b \cdot P}{\hat{P}} \quad v=\frac{D \cdot Q}{\hat{P}} \quad t=\frac{e_{1} \cdot Q}{\hat{P}} \quad & Q=\left(b \times e_{0}\right) \\
& P=\left(D \times e_{1}\right) \\
& \hat{P}=e_{0} \cdot P
\end{array}
$$

- What happens if: $\hat{P}=e_{0} \cdot\left(D \times e_{1}\right) \sim 0$ $\hat{P}=e_{0} \cdot\left(D \times e_{1}\right)<0$

$$
\hat{P}=e_{0} \cdot\left(D \times e_{1}\right)>0
$$

Circular shift can help to visualize this better...

Möller-Trumbore Ray Triangle

- Can it happen, and what does it mean?
$u<0 \quad u>1 \quad v<0 \quad v>1 \quad u+v>1 \quad t \leq 0$

Start $+t \cdot$ Direction $=v_{0}+u \cdot e_{0}+v \cdot e_{1}$

Ray Trace Rendering

- We can use ray tracing to model the light paths (in reverse)

Ray Trace Rendering

- What is the origin of a ray?
- What about the direction?

Ray Trace Rendering

- Accurate way to model reflective / refractive surfaces.

Ray Trace Rendering

- Accurate way to model reflective / refractive surfaces.
- Quite expensive, we need to test each ray against our geometry.

$$
800 \cdot 600 \cdot 3 \cdot 700=1008000000
$$

screen width, height bounces triangles (quite few)

number of rays

That is over a billion intersection tests each frame!

Space Partitioning

- We can keep our objects in a structure, that lessens the number of intersections we need to test.
- Imagine in 2D a ray and a some line segments.

Start

Any ideas, how to lessen the number of tests?

First Idea: Axis-Aligned Grid

- We can limit the number of grid cells to check, by accounting for the ray's direction.

First Idea: Axis-Aligned Grid

- Most of the cells are empty...

Second Idea: Quadtree / Octree

- Make the cells divide, if there are more objects inside them. Start with one cell for the entire scene.

Third Idea: K-D Tree

- Split according to the geometry. Traditionally by the median value.

No node will be empty.

Third Idea: K-D Tree

- Split with a rule to maximize the occurance of empty nodes.

Fourth Idea: BSP Tree

- Binary Space Partitioning divides the space with existing polygons.

Not that useful for ray tracing.

Works well for geometry ordering (front to back).

Fifth Idea: BVH

- Bounding Volume Hierarchy - create a tree of bounding polygons around objects.

Bounding objects also useful for collision detection.

Axis-aligned bounding boxes.

Bounding spheres.

Space Partitioning

- Possible to combine different methods.
- Create structures, based on your own rules.
- Some better for dynamic, some for static scene.
- Ray Tracing Acceleration Data Structures: http://www.cse.iitb.ac.in/~paragc/teaching/2009/cs 475/notes/accelerating_raytracing_sumair.pdf
- Octree vs BVH:
http://thomasdiewald.com/blog/?p=1488

What did you found out today?

What more would you like to know?

Next time
Global Illumination

