Computer Graphics MTAT.03.015

Raimond Tunnel

The Road So Far...

Transformations

- Watch the Computerphile video, try to find out:
 - 1) Why are we using matrices?

The True Power of the Matrix (Transformations in Graphics) – Computerphile https://www.youtube.com/watch?v=vQ60rFwh2ig

Transformations

- Watch the Computerphile video, try to find out:
 - 1) Why are we using matrices?
 - 2) Where do the homogeneous coordinates come in?

The True Power of the Matrix (Transformations in Graphics) – Computerphile https://www.youtube.com/watch?v=vQ60rFwh2ig

• Also called *linear mapping*, *linear function*

- Also called *linear mapping*, *linear function*
- Transforms a vector space V into a vector space W, while preserving addition and scalar multiplication

- Also called *linear mapping*, *linear function*
- Transforms a vector space V into a vector space W, while preserving addition and scalar multiplication
- Satisfies: $f(\alpha \cdot v + \beta \cdot u) = \alpha \cdot f(v) + \beta \cdot f(u)$

- Also called *linear mapping*, *linear function*
- Transforms a vector space V into a vector space W, while preserving addition and scalar multiplication
- Satisfies: $f(\alpha \cdot v + \beta \cdot u) = \alpha \cdot f(v) + \beta \cdot f(u)$

• In 3D:
$$\alpha, \beta \in \mathbb{R}$$
 $u, v \in \mathbb{R}^3$

• Take our vector space of points

- Take our vector space of points
- Take for example a point p=(2, 1)

- Take our vector space of points
- Take for example a point p=(2, 1)
- Try mappings:

1)
$$f(p) = (p_x, p_y)$$

2) $f(p) = (2 \cdot p_x, p_y)$
3) $f(p) = (p_x, 2 \cdot p_y)$
4) $f(p) = (2 \cdot p_x, 2 \cdot p_y)$

Test the linearity at home...

• From Algebra you know that all linear transformations can be represented as matrices.

Linear transformation \rightarrow Matrix

- From Algebra you know that all linear transformations can be represented as matrices.
- Every matrix also gives you a linear transformation.

Linear transformation \rightarrow Matrix Linear transformation \leftarrow Matrix

• What would be the matrices for the linear transformations we just saw?

$$f(p) = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix} \cdot \begin{pmatrix} p_x \\ p_y \end{pmatrix}$$

$$f(p) = (p_x, p_y) \qquad f(p) = (p_x, 2 \cdot p_y) f(p) = (2 \cdot p_x, p_y) \qquad f(p) = (2 \cdot p_x, 2 \cdot p_y)$$

15 / 67

Scale

Stretches or shrinks the space

$$2D \qquad \begin{pmatrix} a_x & 0 \\ 0 & a_y \end{pmatrix}$$

 $a_x - x$ -axis scale factor $a_y - y$ -axis scale factor

3D

$$\begin{pmatrix}
a_x & 0 & 0 \\
0 & a_y & 0 \\
0 & 0 & a_z
\end{pmatrix}$$

 $a_x - x$ -axis scale factor $a_y - y$ -axis scale factor $a_x - z$ -axis scale factor

Scale

Transformations can be easily understood, if we see what they do with the standard basis

Scale

Transformations can be easily understood, if we see what they do with the standard basis

Scale

• Transformations can be easily understood, if we see what they do with the standard basis

 Furthermore, one can read the transformed standard basis from the columns of the transformation matrix!

Shear

 Shear-y, we tilt the x basis vector parallel to y by angle φ counterclockwise

$$\begin{pmatrix} 1 & 0 \\ \tan(\varphi) & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y + \tan(\varphi) \cdot x \end{pmatrix}$$

 Shear-x, we tilt the y basis vector parallel to x by angle φ clockwise

$$\begin{pmatrix} 1 & \tan(\varphi) \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + \tan(\varphi) \cdot y \\ y \end{pmatrix}$$

What about in 3D?

• We want to keep the basis vectors on the unitcircle.

• Rotates around the *z* axis by the angle α

2D
$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$
 α - Positive angle to rotate by

• Rotates around the *z* axis by the angle α

2D
$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$
 α - Positive angle to rotate by

• Similar matrices that rotate around 3D each main axis.

• Rotates around the z axis by the angle α

2D
$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$
 α - Positive angle to rotate by

- Similar matrices that rotate around 3D each main axis.
 - What about rotation around an arbitrary axis?

Defined geometry

Shear

(2, 4)

• Will these be enough?

Translation

• Imagine a 1D world located at y=1 line in 2D.

Translation

• Imagine a 1D world located at *y*=1 line in 2D.

Translation

• Imagine a 1D world located at y=1 line in 2D.

• Notice that all the points are in the form: (x, 1)

Translation

 How to transform the 2D space so that stuff in the 1D hyperplane y=1 moves an equal amount?

Translation

• Shear-x by $tan(45^\circ) = 1$

• Shear-x with $tan(63.4^\circ) = 2$

Translation

• Affine transformation in the current space, linear shear transformation in 1 dimension higher space.

$$\begin{array}{cccc}
\mathbf{2D} & \begin{pmatrix} 1 & 0 & x_t \\ 0 & 1 & y_t \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x + x_t \\ y + y_t \\ 1 \end{pmatrix} \\
\begin{array}{c}
\mathbf{3D} & \text{Shear-xyz} \\
\begin{array}{c}
\mathbf{3D} & \text{Shear-xyz} \\
\end{array}$$

$$\begin{array}{c}
\mathbf{1D} & \begin{pmatrix} 1 & x_t \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} x + x_t \\ 1 \end{pmatrix} \\
\begin{array}{c}
\mathbf{1} & 0 & 0 & x_t \\ 0 & 1 & 0 & y_t \\ 0 & 0 & 1 & z_t \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x + x_t \\ y + y_t \\ z + z_t \\ 1 \end{pmatrix}$$

• This together gives us a **very good toolset** to transform our geometry as we wish.

• This together gives us a **very good toolset** to transform our geometry as we wish.

Linear transformation Affine transformation $a \ b \ c \ x_t$ $d \ e \ f \ y_t$ $g \ h \ i \ z_t$ $0 \ 0 \ 0 \ 1$ $\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} ax + by + cz + x_t \\ dx + ey + fz + y_t \\ gx + hy + iz + z_t \\ 1 \end{pmatrix}$

• This together gives us a **very good toolset** to transform our geometry as we wish.

• This together gives us a **very good toolset** to transform our geometry as we wish.

Multiple Transformations

• How can we apply multiple transformations?

$$A \cdot (B \cdot (C \cdot v))$$

 \mathbf{p} ((\mathbf{q}))

• Is it the same as?

 In some graphics libraries you assign the position / translation, rotation and scale individually.

 In some graphics libraries you assign the position / translation, rotation and scale individually.

```
object.position.set(2.7, 1.2, 0);
object.scale.set(2.4, 0.1, 0.4);
object.rotation.set(0, toRad(180), 0);
```

- In some graphics libraries you assign the position / translation, rotation and scale individually.
- To the GPU the object transformations are sent as a matrix (*model matrix*).

- In some graphics libraries you assign the position / translation, rotation and scale individually.
- To the GPU the object transformations are sent as a matrix (*model matrix*).

projectionMatrix·viewMatrix·modelMatrix·v

 $P \cdot V \cdot M \cdot v$

- In some graphics libraries you assign the position / translation, rotation and scale individually.
- To the GPU the object transformations are sent as a matrix (*model matrix*).
- Questions about transformations?

Scene Graph

• Dependency between (parts of) objects.

Scene Graph

Head $S \cdot H \cdot v$ Body $S \cdot B \cdot v$ Left hand $S \cdot B \cdot L \cdot v$ **Right hand** $S \cdot B \cdot R \cdot v$

 Stack can be used to save and load matrices (intermediary states)

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

1) M = Identity, push(M)

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

1) M = Identity, push(M)

2) M *= S, push(M) Move to snowman's space

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

 $I \cdot S \cdot H$

 $I \cdot S$

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

 $I \cdot S$

Ι

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

 $I \cdot S \cdot H$

 $I \cdot S$

Ι

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

```
2) ...
3) M *= H, push(M)
4) Draw head vertices
5) pop(), M = top()
```


- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

 $I \cdot S \cdot B$

 $I \cdot S$

Ι

```
2) ...
3) M *= H, push(M)
4) Draw head vertices
5) pop(), M = top()
6) M *= B, push(M) Move to body's space
```

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

 $I \cdot S \cdot B$

 $I \cdot S$

Ι

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

 $I \cdot S \cdot B$

 $I \cdot S$

 Each (part of an) object can be modelled in its own local space.

- Each (part of an) **object** can be modelled in its own **local space**.
- When we traverse the scene graph, important intermediary states are saved / loaded.

- Each (part of an) **object** can be modelled in its own **local space**.
- When we traverse the scene graph, important intermediary states can saved / loaded.
- No need to recalculate same matrix multiplications many times or find inverse transformations.

$$M = A \cdot B \cdot D \cdot D^1 = A \cdot B$$

stack.pop(),
$$M = \text{stack.top}()$$

- Each (part of an) **object** can be modelled in its own **local space**.
- When we traverse the scene graph, important intermediary states can saved / loaded.
- No need to recalculate same matrix multiplications many times or find inverse transformations.
- Questions about the matrix stack?

What new did you find out today?

What more would you like to know?

Next time

Frames of reference, projections