Computer Graphics
 MTAT.03.015

Raimond Tunnel

The Road So Far...

Transformations

- Watch the Computerphile video, try to find out: 1) Why are we using matrices?

The True Power of the Matrix (Transformations in Graphics) - Computerphile https://www.youtube.com/watch?v=vQ60rFwh2ig

Transformations

- Watch the Computerphile video, try to find out:

1) Why are we using matrices?
2) Where do the homogeneous coordinates come in?

The True Power of the Matrix (Transformations in Graphics) - Computerphile https://www.youtube.com/watch?v=vQ60rFwh2ig

Linear Transformations

- Also called linear mapping, linear function

Linear Transformations

- Also called linear mapping, linear function
- Transforms a vector space V into a vector space W, while preserving addition and scalar multiplication

Linear Transformations

- Also called linear mapping, linear function
- Transforms a vector space V into a vector space W, while preserving addition and scalar multiplication
- Satisfies: $\quad f(\alpha \cdot v+\beta \cdot u)=\alpha \cdot f(v)+\beta \cdot f(u)$

Linear Transformations

- Also called linear mapping, linear function
- Transforms a vector space V into a vector space W, while preserving addition and scalar multiplication
- Satisfies: $\quad f(\alpha \cdot v+\beta \cdot u)=\alpha \cdot f(v)+\beta \cdot f(u)$
- In 3D: $\alpha, \beta \in \mathbb{R} \quad u, v \in \mathbb{R}^{3}$

Linear Transformations

- Take our vector space of points

Linear Transformations

- Take our vector space of points
- Take for example a point $p=(2,1)$

Linear Transformations

- Take our vector space of points
- Take for example a point $p=(2,1)$
- Try mappings:

1) $f(p)=\left(p_{x}, p_{y}\right)$
2) $f(p)=\left(2 \cdot p_{x}, p_{y}\right)$
3) $f(p)=\left(p_{x}, 2 \cdot p_{y}\right)$
4) $f(p)=\left(2 \cdot p_{x}, 2 \cdot p_{y}\right)$

Test the linearity at home...

Linear Transformations

- From Algebra you know that all linear transformations can be represented as matrices.

Linear transformation \rightarrow Matrix

Linear Transformations

- From Algebra you know that all linear transformations can be represented as matrices.
- Every matrix also gives you a linear transformation.

Linear transformation \rightarrow Matrix
Linear transformation \leftarrow Matrix

Linear Transformations

- What would be the matrices for the linear transformations we just saw?

$$
f(p)=\left(\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right) \cdot\binom{p_{x}}{p_{y}}
$$

$f(p)=\left(p_{x}, p_{y}\right)$
$f(p)=\left(p_{x}, 2 \cdot p_{y}\right)$
$f(p)=\left(2 \cdot p_{x}, p_{y}\right)$

$$
f(p)=\left(2 \cdot p_{x}, 2 \cdot p_{y}\right)
$$

Scale

- Stretches or shrinks the space
$2 \mathrm{D} \quad\left(\begin{array}{cc}a_{x} & 0 \\ 0 & a_{y}\end{array}\right) \quad \begin{aligned} & a_{x}-\mathrm{x} \text {-axis scale factor } \\ & a_{y}-\mathrm{y} \text {-axis scale factor }\end{aligned}$
$3 D \quad\left(\begin{array}{ccc}a_{x} & 0 & 0 \\ 0 & a_{y} & 0 \\ 0 & 0 & a_{z}\end{array}\right) \quad \begin{aligned} & a_{x}-\mathrm{x} \text {-axis scale factor } \\ & a_{y}-\mathrm{y} \text {-axis scale factor } \\ & a_{\mathrm{x}}-\mathrm{z} \text {-axis scale factor }\end{aligned}$

Scale

- Transformations can be easily understood, if we see what they do with the standard basis

Scale

- Transformations can be easily understood, if we see what they do with the standard basis

Scale

- Transformations can be easily understood, if we see what they do with the standard basis

- Furthermore, one can read the transformed standard basis from the columns of the transformation matrix!

Shear

- Shear-x, shear-y

Shear-x or shear-y? Matrix?

- Tilts one of the axes parallel to other(s)

Shear

- Shear-y, we tilt the x basis vector parallel to y by angle φ counterclockwise

$$
\left(\begin{array}{cc}
1 & 0 \\
\tan (\varphi) & 1
\end{array}\right) \cdot\binom{x}{y}=\binom{x}{y+\tan (\varphi) \cdot x}
$$

- Shear-x, we tilt the y basis vector parallel to x by angle φ clockwise $\left(\begin{array}{cc}1 & \tan (\varphi) \\ 0 & 1\end{array}\right) \cdot\binom{x}{y}=\binom{x+\tan (\varphi) \cdot y}{y}$

Rotation

- We want to keep the basis vectors on the unitcircle.

Rotation

$$
\begin{aligned}
& e_{0}^{\prime}=(|a|,|b|)=(\cos (\alpha), \sin (\alpha)) \\
& e_{1}^{\prime}=\left(\left|a^{\prime}\right|,\left|b^{\prime}\right|\right)=(-\sin (\alpha), \cos (\alpha))
\end{aligned} \quad \cos (\alpha)=\frac{|a|}{\left|e_{0}^{\prime}\right|}=\frac{|a|}{1}=|a|
$$

Rotation

- Rotates around the z axis by the angle α

2D $\quad\left(\begin{array}{cc}\cos (\alpha) & -\sin (\alpha) \\ \sin (\alpha) & \cos (\alpha)\end{array}\right) \quad \begin{gathered}\alpha-\text { Positive angle } \\ \text { to rotate by }\end{gathered}$

Rotation

- Rotates around the z axis by the angle α

2D $\quad\left(\begin{array}{cc}\cos (\alpha) & -\sin (\alpha) \\ \sin (\alpha) & \cos (\alpha)\end{array}\right) \quad \begin{gathered}\alpha-\text { Positive angle } \\ \text { to rotate by }\end{gathered}$

- Similar matrices that rotate around 3D each main axis.

Rotation

- Rotates around the z axis by the angle α
$2 \mathrm{D} \quad\left(\begin{array}{cc}\cos (\alpha) & -\sin (\alpha) \\ \sin (\alpha) & \cos (\alpha)\end{array}\right) \quad \begin{gathered}\alpha-\text { Positive angle } \\ \text { to rotate by }\end{gathered}$
- Similar matrices that rotate around 3D each main axis.
- What about rotation around an arbitrary axis?

Linear Transformations

Defined geometry

Linear Transformations

Linear Transformations

Scale

Linear Transformations

Linear Transformations

Rotation

Linear Transformations

Linear Transformations

Shear

Linear Transformations

- Will these be enough?

Translation

- Imagine a 1D world located at $y=1$ line in 2D.

Translation

- Imagine a 1D world located at $y=1$ line in 2D.

Translation

- Imagine a 1D world located at $y=1$ line in 2D.

- Notice that all the points are in the form: $(x, 1)$

Translation

- How to transform the 2D space so that stuff in the 1 D hyperplane $y=1$ moves an equal amount?

Translation

- Shear-x by $\tan \left(45^{\circ}\right)=1$

- Shear-x with $\tan \left(63.4^{\circ}\right)=2$

Translation

- Affine transformation in the current space, linear shear transformation in 1 dimension higher space.
$\underset{\text { Shear-xy }}{2 \mathrm{D}}\left(\begin{array}{ccc}1 & 0 & x_{t} \\ 0 & 1 & y_{t} \\ 0 & 0 & 1\end{array}\right) \cdot\left(\begin{array}{c}x \\ y \\ 1\end{array}\right)=\left(\begin{array}{c}x+x_{t} \\ y+y_{t} \\ 1\end{array}\right)$
3D shear-xyz

Transformations

- This together gives us a very good toolset to transform our geometry as we wish.

Transformations

- This together gives us a very good toolset to transform our geometry as we wish.

Transformations

- This together gives us a very good toolset to transform our geometry as we wish.

Transformations

- This together gives us a very good toolset to transform our geometry as we wish.

Used for perspective projection...

Multiple Transformations

- How can we apply multiple transformations?

$$
A \cdot(B \cdot(C \cdot v))
$$

- Is it the same as?

$$
B \cdot(A \cdot(C \cdot v))
$$

Transformations

- In some graphics libraries you assign the position / translation, rotation and scale individually.

Transformations

- In some graphics libraries you assign the position / translation, rotation and scale individually.

```
object.position.set(2.7, 1.2, 0);
object.scale.set(2.4, 0.1, 0.4);
object.rotation.set(0, toRad(180), 0);
```


Transformations

- In some graphics libraries you assign the position / translation, rotation and scale individually.
- To the GPU the object transformations are sent as a matrix (model matrix).

Transformations

- In some graphics libraries you assign the position / translation, rotation and scale individually.
- To the GPU the object transformations are sent as a matrix (model matrix).
projectionMatrix $\cdot v$ viewMatrix \cdot modelMatrix $\cdot v$

$$
P \cdot V \cdot M \cdot v
$$

Transformations

- In some graphics libraries you assign the position / translation, rotation and scale individually.
- To the GPU the object transformations are sent as a matrix (model matrix).
- Questions about transformations?

Scene Graph

- Dependency between (parts of) objects.

Scene Graph

Head
$S \cdot H \cdot v$
Body
$S \cdot B \cdot v$
Left hand
$S \cdot B \cdot L \cdot v$
Right hand
$S \cdot B \cdot R \cdot v$

Matrix Stack

- Stack can be used to save and load matrices (intermediary states)

Matrix Stack

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

1) $M=$ Identity, push(M)

Matrix Stack

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

1) $M=$ Identity, push(M)
2) $M^{*}=S$, push(M) Move to snowman's space

Matrix Stack

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

1) $M=$ Identity, push(M)
2) $M^{*}=S, \operatorname{push}(M)$
3) $M^{*}=H$, push(M) Move to head's space
$\mathrm{I} \cdot \mathrm{S} \cdot \mathrm{H}$
I•S

Matrix Stack

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

1) $M=$ Identity, push(M)
2) $M^{*}=S, \operatorname{push}(M)$
3) M * $=H$, push(M)
4) Draw head vertices

Matrix Stack

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

1) $M=$ Identity, push(M)
2) $M^{*}=S, \operatorname{push}(M)$
3) M * $=H$, push(M)
4) Draw head vertices

I•S•H
I•S

Matrix Stack

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

1) $M=$ Identity, push(M)
2) $M^{*}=S, \operatorname{push}(M)$
3) $M^{*}=H$, push(M)
4) Draw head vertices
5) $\operatorname{pop}(), \mathrm{M}=$ top($)$

Matrix Stack

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

2) ...
3) M * $=H$, push(M)
4) Draw head vertices
5) $\operatorname{pop}(), \mathrm{M}=$ top($)$

Matrix Stack

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

2) ...
3) $M^{*}=H$, $\operatorname{push}(M)$
4) Draw head vertices
5) $\operatorname{pop}(), \mathrm{M}=$ top()
6) $M^{*}=B$, push(M) Move to body's space

Matrix Stack

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

2) ...
3) $M^{*}=H$, $\operatorname{push}(M)$
4) Draw head vertices
5) $\operatorname{pop}(), \mathrm{M}=\operatorname{top}()$
6) M * $=B$, push(M)
7) Draw body vertices

Matrix Stack

- Stack can be used to save and load matrices (intermediary states)
- Current state is in the top of the stack

5) ...
6) $M^{*}=B, \operatorname{push}(M)$
7) Draw body vertices
8) ... ?

I•S

Matrix Stack

- Each (part of an) object can be modelled in its own local space.

Matrix Stack

- Each (part of an) object can be modelled in its own local space.
- When we traverse the scene graph, important intermediary states are saved / loaded.

Matrix Stack

- Each (part of an) object can be modelled in its own local space.
- When we traverse the scene graph, important intermediary states can saved / loaded.
- No need to recalculate same matrix multiplications many times or find inverse transformations.
$M=A \cdot B \cdot D \cdot D^{1}=A \cdot B$
stack.pop($), M=$ stack.top ()

Matrix Stack

- Each (part of an) object can be modelled in its own local space.
- When we traverse the scene graph, important intermediary states can saved / loaded.
- No need to recalculate same matrix multiplications many times or find inverse transformations.
- Questions about the matrix stack?

What new did you find out today?

What more would you like to know?

Next time
Frames of reference, projections

