Computer Graphics

MTAT.03.015

Raimond Tunnel
The Road So Far...

Last week & This week
Frames of Reference

• Can you name different spaces (frames of reference) we use?
Frames of Reference

- Can you name different spaces (frames of reference) we use?
Object Space \rightarrow World Space

- We model our objects in object space
Object Space → World Space

- We model our objects in object space
 - Symmetrically from the origin
Object Space \rightarrow World Space

- We model our objects in object space
 - Symmetrically from the origin
 - Up from the origin
Object Space → World Space

- We model our objects in object space
 - Symmetrically from the origin
 - Up from the origin
- We position, orient and scale our object with the **model matrix**, thus creating the world space!
Object Space → World Space

- We model our objects in object space
 - Symmetrically from the origin
 - Up from the origin
- We position, orient and scale our object with the model matrix, thus creating the world space!
- World space is like the root node in the scene graph
Object Space → World Space

• We model our objects in object space
 • Symmetrically from the origin
 • Up from the origin

• We position, orient and scale our object with the \textit{model matrix}, thus creating the world space!

• World space is like the root node in the scene graph:
 • Origin defined by the identity transformation
Object Space \rightarrow World Space

- We model our objects in object space
 - Symmetrically from the origin
 - Up from the origin
- We position, orient and scale our object with the model matrix, thus creating the world space!
- World space is like the root node in the scene graph:
 - Origin defined by the identity transformation
 - Every child transformed relative to it
Object Space → World Space

This is what you did last week. :)

Object Space → World Space

\[\text{projectionMatrix} \cdot \text{viewMatrix} \cdot \text{modelMatrix} \cdot \mathbf{v} \]

\[P \cdot V \cdot M \cdot \mathbf{v} \]

This is what you did last week. :)
World Space → Camera Space

- We want to represent everything related to the camera (to make projection easier)

Transform so that this is the origin + basis
World Space \rightarrow Camera Space

- We want to represent everything related to the camera (to make projection easier)
- We can think of the camera as another object in the scene.
World Space → Camera Space

- We want to represent everything related to the camera (to make projection easier)
- We can think of the camera as another object in the scene.
 - It has its own rotation and position.
World Space → Camera Space

- We want to represent everything related to the camera (to make projection easier).
- We can think of the camera as another object in the scene.
 - It has its own rotation and position.
 - Scale is not really relevant for the camera.
World Space → Camera Space

- Assume that we have a camera's model transformation matrix:
World Space → Camera Space

• Assume that we have a camera's model transformation matrix:

\[
M_{\text{camera}} = \begin{pmatrix}
\text{right}_x & \text{up}_x & \text{back}_x & \text{pos}_x \\
\text{right}_y & \text{up}_y & \text{back}_y & \text{pos}_y \\
\text{right}_z & \text{up}_z & \text{back}_z & \text{pos}_z \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
World Space → Camera Space

• Assume that we have a camera's model transformation matrix:

\[M_{camera} = \begin{pmatrix}
right_x & up_x & back_x & pos_x \\
right_y & up_y & back_y & pos_y \\
right_z & up_z & back_z & pos_z \\
0 & 0 & 0 & 1
\end{pmatrix} \]

• Remember that the columns are the transformed standard basis...
World Space \rightarrow Camera Space

- Assume that we have a camera's model transformation matrix:

$$M_{\text{camera}} = \begin{pmatrix}
right_x & up_x & back_x & pos_x \\
right_y & up_y & back_y & pos_y \\
right_z & up_z & back_z & pos_z \\
0 & 0 & 0 & 1
\end{pmatrix}$$

- Remember that the columns are the transformed standard basis...

- Can you come up with a matrix that describes our world relative to the camera?
World Space → Camera Space

• **View matrix** can be found like this:
World Space → Camera Space

- **View matrix** can be found like this:

 1) Camera's linear transform. is an orthonormal matrix

\[
M_{\text{camera}} = \begin{pmatrix}
\text{right}_x & \text{up}_x & \text{back}_x & \text{pos}_x \\
\text{right}_y & \text{up}_y & \text{back}_y & \text{pos}_y \\
\text{right}_z & \text{up}_z & \text{back}_z & \text{pos}_z \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
World Space → Camera Space

- **View matrix** can be found like this:
 1) Camera's linear transform is an orthonormal matrix
 2) Transpose it to find the inverse

\[
\begin{pmatrix}
\text{right}_x & \text{up}_x & \text{back}_x \\
\text{right}_y & \text{up}_y & \text{back}_y \\
\text{right}_z & \text{up}_z & \text{back}_z \\
\end{pmatrix}^T = \begin{pmatrix}
\text{right}_x & \text{right}_y & \text{right}_z \\
\text{up}_x & \text{up}_y & \text{up}_z \\
\text{back}_x & \text{back}_y & \text{back}_z \\
\end{pmatrix}
\]
World Space → Camera Space

- **View matrix** can be found like this:
 1) Camera's linear transform. is an orthonormal matrix
 2) Transpose it to find the inverse
 3) Camera's translation can be inverted by negation

\[
\begin{pmatrix}
\text{right}_x & \text{right}_y & \text{right}_z \\
\text{up}_x & \text{up}_y & \text{up}_z \\
\text{back}_x & \text{back}_y & \text{back}_z \\
\end{pmatrix}
\]

\[
- \begin{pmatrix}
pos_x \\
pos_y \\
pos_z \\
\end{pmatrix} = \begin{pmatrix}
-pos_x \\
p-y \\
-pz \\
\end{pmatrix}
\]
World Space → Camera Space

- **View matrix** can be found like this:

4) Put the two inverse transformations together in the opposite order

\[
V = \begin{pmatrix}
\text{right}_x & \text{right}_y & \text{right}_z & 0 \\
\text{up}_x & \text{up}_y & \text{up}_z & 0 \\
\text{back}_z & \text{back}_y & \text{back}_z & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & -\text{pos}_x \\
0 & 1 & 0 & -\text{pos}_y \\
0 & 0 & 1 & -\text{pos}_z \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
World Space → Camera Space

- **View matrix** can be found like this:

\[
V = \begin{pmatrix}
 right_x & right_y & right_z & 0 \\
 up_x & up_y & up_z & 0 \\
 back_z & back_y & back_z & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
 1 & 0 & 0 & -pos_x \\
 0 & 1 & 0 & -pos_y \\
 0 & 0 & 1 & -pos_z \\
 0 & 0 & 0 & 1
\end{pmatrix}
\]

1. Transpose the rotation to inverse it
2. Negate the translation to inverse it
3. Multiply together in the reverse order
World Space → Camera Space

- Usually it is more intuitive to specify the camera by its position; point it is looking at; and the up-vector.
World Space → Camera Space

- Usually it is more intuitive to specify the camera by its position; point it is looking at; and the up-vector.

Three.js:

```javascript
camera.position.set(x, y, z);
camera.up.set(upX, upY, upZ);
camera.lookAt(point);
```
World Space → Camera Space

- Usually it is more intuitive to specify the camera by its **position**; point it is **looking at**; and the **up-vector**

 OpenGL:

  ```cpp
  glm::mat4 view = glm::lookAt(
      glm::vec3(x, y, z),
      glm::vec3(pX, pY, pZ),
      glm::vec3(upX, upY, upZ)
  );
  ```
World Space → Camera Space

- Usually it is more intuitive to specify the camera by its position; point it is looking at; and the up-vector.
- The up-vector may not be the same as the y-direction of camera's space. It just gives a rough orientation.
World Space \rightarrow Camera Space

- Using the lookAt() command parameters, how to find the correct matrix?
- What do we have and what do we need?
World Space \rightarrow Camera Space

projectionMatrix\cdot\texttt{viewMatrix}\cdot\texttt{modelMatrix}\cdot v

$P\cdot V\cdot M\cdot v$
Camera Space \rightarrow ND Space

- For the **normalized device space**, we transform the view frustum into a cube $[-1, 1]^3$.
Camera Space \rightarrow ND Space

- For the normalized device space, we transform the view frustum into a cube $[-1, 1]^3$.

Orthographic

Slices from $x=0$ plane
Camera Space → ND Space

- For the **normalized device space**, we transform the view frustum into a cube $[-1, 1]^3$.
Camera Space \rightarrow ND Space

- For the **normalized device space**, we transform the view frustum into a cube $[-1, 1]^3$.

Camera Space \rightarrow ND Space

- For the normalized device space, we transform the view frustum into a cube $[-1, 1]^3$.
- We want to flip the z-axis, because our near and far planes are positive values.
Camera Space \rightarrow ND Space

- For the normalized device space, we transform the view frustum into a cube $[-1, 1]^3$.
- We want to flip the z axis, because our near and far planes are positive values.
- This is the job for the projection matrix together with the point normalization.
Camera Space \rightarrow ND Space

\[
\text{projectionMatrix} \cdot \text{viewMatrix} \cdot \text{modelMatrix} \cdot \nu
\]

\[
P \cdot V \cdot M \cdot \nu
\]
Orthographic Projection

- We define our view volume with the values for left, right, top, bottom, near and far planes.
Orthographic Projection

• We define our view volume with the values for left, right, top, bottom, near and far planes.

```
OrthographicCamera( left, right, top, bottom, near, far )
```

each — Camera frustum left plane.
right — Camera frustum right plane.
top — Camera frustum top plane.
bottom — Camera frustum bottom plane.
near — Camera frustum near plane.
far — Camera frustum far plane.

Together these define the camera’s viewing frustum.

From Three.js docs.
Orthographic Projection

- We define our view volume with the values for left, right, top, bottom, near and far planes.
- What would be the matrix that transforms the orthographic view volume into the canonical view volume ([-1, 1]^3)?
Perspective Projection

• Usually defined by the vertical angle for the field-of-view (FOV), the aspect ratio and the near and far planes.
Perspective Projection

- Usually defined by the *vertical angle* for the field-of-view (FOV), the *aspect ratio* and the *near* and *far* planes.

```
PerspectiveCamera( fov, aspect, near, far )
```

- fov — Camera frustum vertical field of view.
- aspect — Camera frustum aspect ratio.
- near — Camera frustum near plane.
- far — Camera frustum far plane.

Together these define the camera's *viewing frustum*.
Perspective Projection

- Usually defined by the vertical angle for the field-of-view (FOV), the aspect ratio and the near and far planes.

- Find the left, right, top and bottom on the near plane, when the projection is symmetric?

 \[
 \text{top} = -\text{bottom} \\
 \text{left} = -\text{right}
 \]

Use the image from 2 slides ago.
Perspective Projection

- Differently from the orthographic projection, here we have a viewer located in a single point.
- Similarly we want to find the normalized device coordinates for all points inside the view volume.
Perspective Projection

- First **find** and then **map** the x and y coordinates of the **projected point** to the correct range using similar triangles.

\[
(x_p, y_p, z_p)
\]

Find \(x_p \) and \(y_p \)
Perspective Projection

\[
P = \begin{bmatrix}
 \text{near} & 0 & 0 & 0 \\
 \text{right} & 0 & \text{near} & 0 \\
 0 & 0 & -1 & 0
\end{bmatrix}
\]

- If the third row would be \((0, 0, 1, 0)\), then all \(z\) coordinates become -1 (because we found the projected coordinates on the near plane)
Perspective Projection

- We want to map the z value from the range [near, far] to the range [-1, 1].
- We can use scale and translation.

\[
P = \begin{pmatrix}
\frac{near}{right} & 0 & 0 & 0 \\
0 & \frac{near}{top} & 0 & 0 \\
0 & 0 & s & t \\
0 & 0 & -1 & 0 \\
\end{pmatrix}
\]
Perspective Projection

• We want to map the z value from the range [near, far] to the range [-1, 1], so...

\[
\begin{align*}
 s \cdot \text{near} + t &= -1 \\
 s \cdot \text{far} + t &= 1
\end{align*}
\]

Can this be solved for \(s \) and \(t \)?
Perspective Projection

- After applying this matrix and doing the point normalization (dividing with \(w \)), you have the perspective projection.

\[
P = \begin{pmatrix}
\frac{\text{near}}{\text{right}} & 0 & 0 & 0 \\
0 & \frac{\text{near}}{\text{top}} & 0 & 0 \\
0 & 0 & -\frac{\text{far} + \text{near}}{\text{far} - \text{near}} & -\frac{2 \cdot \text{far} \cdot \text{near}}{\text{far} - \text{near}} \\
0 & 0 & -1 & 0
\end{pmatrix}
\]
Perspective Projection

When using the FOV (α) and aspect ratio (ar).

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{ar \cdot \tan\left(\frac{\alpha}{2}\right)} & 0 & 0 & 0 \\ \frac{1}{\tan\left(\frac{\alpha}{2}\right)} & 0 & 0 & 0 \\ 0 & 0 & -\frac{far + near}{far - near} & -\frac{2 \cdot far \cdot near}{far - near} \\ 0 & 0 & \frac{far + near}{far - near} & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Clip Space

• After the projection matrix multiplication and before the w-division, vertices are in a *clip space*.

Read more here: https://stackoverflow.com/a/21841924/3067608
Clip Space

• After the projection matrix multiplication and before the \(w \)-division, vertices are in a *clip space*.

• That is the space, where it is the most easiest to determine, which triangles need to be clipped or culled.

Read more here: https://stackoverflow.com/a/21841924/3067608
Clip Space

- After the projection matrix multiplication and before the w-division, vertices are in a *clip space*.

- That is the space, where it is the most easiest to determine, which triangles need to be clipped or culled.

- **Clipping** – performed when some part of the triangle is inside the view volume.

Read more here: https://stackoverflow.com/a/21841924/3067608
Clip Space

- After the projection matrix multiplication and before the w-division, vertices are in a *clip space*.
- That is the space, where it is the most easiest to determine, which triangles need to be clipped or culled.
- **Clipping** – performed when some part of the triangle is inside the view volume.
- **Culling** – performed when the triangle is not inside the view volume. Or is back-facing.

Read more here: https://stackoverflow.com/a/21841924/3067608
ND Space → Screen Space

- We have everything we want to show now in the $[-1, 1]^3$ cube (normalized device space).
ND Space \rightarrow Screen Space

- We have everything we want to show now in the $[-1, 1]^3$ cube (normalized device space).
- We also know the correct relative depth of the vertices.

Before the perspective projection
ND Space \rightarrow Screen Space

- We have everything we want to show now in the $[-1, 1]^3$ cube (normalized device space).
- We also know the correct relative depth of the vertices.
ND Space → Screen Space

- We have everything we want to show now in the $[-1, 1]^3$ cube (normalized device space).
- We also know the correct relative depth of the vertices.

This will not happen!
ND Space → Screen Space

- We have everything we want to show now in the $[-1, 1]^3$ cube (normalized device space).
- We also know the correct relative depth of the vertices.
- How to know where to draw on the screen?

Come up with that matrix...
ND Space → Screen Space

• This is done for you, the screen space matrix is constructed when you specify the viewport size.

Three.js
renderer = new THREE.WebGLRenderer();
renderer.setSize(width, height);

OpenGL + GLFW
win = glfwCreateWindow(width, height, "Hello GLFW!", NULL, NULL)
Overall

Object Space
Overall

Object Space \rightarrow World Space
Overall

Object Space \rightarrow World Space \rightarrow

\rightarrow Camera (View) Space
Overall

Object Space \rightarrow World Space \rightarrow

\rightarrow Camera (View) Space

Light calculations are usually in this space!
Overall

Camera (View) Space \rightarrow Normalized Device Space
Overall

→ Normalized Device Space

→ Screen Space
Overall

• Vertex shader must return homogeneous coordinates in the clip space – that is in normalized device space without the w-division.

\[
\text{gl_Position} = \text{projection} \times \text{view} \times \text{model} \times \text{vec4(position, 1.0)};
\]

\[
\text{gl_Position} = \text{projectionMatrix} \times \text{modelViewMatrix} \times \text{vec4(position, 1.0)};
\]

\[
\text{gl_Position} = \text{modelViewProjectionMatrix} \times \text{vec4(position, 1.0)};
\]
Overall

- Vertex shader must return homogeneous coordinates in the clip space – that is in normalized device space without the w-division.

  ```
  gl_Position = projection * view * model * vec4(position, 1.0);
  gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
  gl_Position = modelViewProjectionMatrix * vec4(position, 1.0);
  ```

- Then GPU does:
 - w-division
 - Screen space transformation
Additional Links

- **General overview:**

- **How to derive the view matrix:**

- **How to derive the projection matrices:**
 http://www.songho.ca/opengl/gl_projectionmatrix.html

- **About transforming the surface normals:**
What was interesting for you today?

What more would you like to know?

Next time

Shading and Lighting