Computer Graphics

MTAT.03.015

Raimond Tunnel
Course Information

- **Course Page** https://courses.cs.ut.ee/2020/cg/fall

- **Mailing List**

aine.ati.arvutigraafika@lists.ut.ee

- **Learning Environment (CGLearn)**

https://cglearn.eu
Instructors

• Raimond Tunnel – jee7@ut.ee
 Lectures, Basic I, Basic II, JavaScript, C++

• Jaanus Jaggo – jjaggo@ut.ee
 Blending, Procedural Generation, Noise,
 Game Engines, Blender

• Ats Kurvet – akurvet@ut.ee
 Game Engines, Unreal Engine 4
Organization

- 6 credit course
 - Lectures: $15 \cdot 1.5h = 22.5h = \sim 0.9$ credits
 - Practice Sessions: $16 \cdot 1.5h = 24h = \sim 0.9$ credits
 - Homework: 2.3 credits $= \sim 60h = 15 \cdot 4h$
 - Project: $40h = 1.5$ credits
 - Exam: $2h + 8h = \sim 0.4$ credits
Organization

• Grade

• **Homework:** 40p

 Solve the tasks in CGLearn!
Organization

• Grade

• **Homework:** 40p

Solve the tasks in CGLearn!

You can earn more when you solve more tasks.
Organization

- Grade
 - Homework: 40p
 - Project: 30p

Do something fun in a 2-3 person team!
Organization

• Grade
 • Homework: 40p
 • Project: 30p
 • Exam: 30p

General knowledge from the lectures and CGLearn!
Organization

- Grade
 - Homework: 40p
 - Project: 30p
 - Exam: 30p
- Bonus Points – eg game jams, TBA
Organization

• Grade
 • Homework: 40p
 • Project: 30p
 • Exam: 30p
 • Bonus Points

• (90, 100+] – A, (80, 90] – B, (70, 80] – C, ...
Organization

- **Lectures** – Tuesday, 16:15, in BBB

- **Practice Sessions**
 - Basic I (JS), Basic II – Thursday, 12:15, r2006
 - Basic I (C++), Game Engines – Thursday, 14:15, r2006

- **Project Presentation** – In the exam session. TBA

- **Exam** – In the exam session. TBA
Organization

- Lectures – Tuesday, 16:15, in BBB
- Practice Sessions
 - Basic I (JS), Basic II – Thursday, 12:15, r2006
 - Basic I (C++), Game Engines – Thursday, 14:15, r2006
- Project Presentation – In the exam session. TBA.
- Exam – In the exam session. TBA

NB! The exam session is in January!
Project

• Deadlines and instructions are here:
 https://courses.cs.ut.ee/2020/cg/fall/Main/Projects

• Can be any graphical application, prototype or a research project (eg replicating results from some paper).

• Extra ideas and time in the CGS (MTAT.03.305) and CGP (MTAT.03.328) courses.

Modules

• **Basic I**
 Geometry, transformations, projection, lighting, texturing and blending.

• **Basic II**
 Environment mapping, curves, procedural generation, ray tracing, global illumination, shadows.

• **Game Engines**
 Graphics in Unreal Engine 4 and 3D modelling in Blender
• You should finish two of the modules to the end
• You can attend the other group and do their tasks for extra points (~60p total).
Homework

- Each week we will cover topics in the practice sessions.

- **Deadlines**
 - Basic I – 25.10.2019
 - Basic II, Game Engines – Week before the exam

- **Do the homework weekly,** because:
 - You will not fall behind
 - You will get the points sooner
Homework

- We start doing the tasks together in the practice.
- You may get individual help in the practice session.
Homework

- We start doing the tasks together in the practice.
- You may get individual help in the practice session.
- There are instructional videos for the most of the tasks in CGLearn!
Homework

• Solutions can be submitted as many times as you want until the deadline!

• We will give you feedback in about 3 days and you can fix your issues.

• Do the tasks weekly!

• Deadlines are strict!
Material

- CGLearn – https://cglearn.eu
 - Material with interactive examples
 - Tasks (homework)

- In the lectures we will cover similar topics that are in CGLearn (but not 100% overlapping)
- In the practice sessions we will discuss the concepts in tasks and start implementing them.

CGLearn is my Master thesis work. Let me know of bugs. :)
Material

• Fundamentals of Computer Graphics
 P. Shirley, M. Ashikhmin, S. Marschner, 2009

• Provides a good and systematic approach to many topics we cover.
• Covers the math behind the topics.
• We got you many copies to borrow from the library!

https://www.ester.ee/record=b4423695*est
Material

Journals
- ACM SIGGRAPH
- IEEE Transactions on Visualization and Computer Graphics
- Computer Graphics Forum
- NVIDIA's GPU Technology Conference Presentations
- Ke-Sen Huang's Resources Page

Books
- The OpenGL Programming Guide (Red Book) (9th edition)
- GPU Gems (1, 2 and 3)
- GPU Pro series (1 to 7)
- GPU Zen series (1 to ...)
- Bézier and B-Spline Techniques – H. Prautzsch, W. Boehm, M. Paluszny
- Physically Based Rendering: From Theory to Implementation – G. Humphreys and M. Pharr (3rd edition)
- Vulkan Cookbook – P. Lapinski
- The Algorithmic Beauty of Plants – A. Lindenmayer and P. Prusinkiewicz
Lectures
Lectures

1) Me talking about the topics,
 Me answering questions (I do not ask you)

2) Me talking about the topics
 Class answering the questions (I ask the class)

3) Me talking about the topics
 You answering the questions (I ask people)

4) You talking about the topics (In small groups)
 Each time groups prepare presentations
Computer Graphics

- So, what is computer graphics? Applications?
Computer Graphics

- Games and entertainment

Deus Ex, 2000

Deus Ex: Human Revolution, 2011
Computer Graphics

- Games and entertainment

Deus Ex: Mankind Divided, 2016
Cyberpunk 2077, 2020
Computer Graphics

- Graphical user interfaces (GUI)
Computer Graphics

- Computer Aided Design (CAD)
Computer Graphics

- Scientific simulation visualization

COVID-19 particle
Alissa Eckert / CDC

Parker Solar Probe
Computer Graphics

• Data visualization

World ocean currents, NASA
http://deepbluehome.blogspot.com/2012/03/cool-cat-currents.html

World's Biggest Airlines
http://spatial.ly/2012/06/mapping-worlds-biggest-airlines/
Computer Graphics

- Simulations / Simulators

 Road Planer Simulator (Maantehõövli simulaator)
 Estonian Road Museum (Eesti Maanteemuuseum)
 http://muuseum.mnt.ee/

 http://en.wikipedia.org/wiki/Flight_simulator
Computer Graphics

- Art

See also: https://flam3.com/
and: https://screen.aptgg.ee/

Blithe Certainty by Kerry Mitchell

Buddhabrot
https://en.wikipedia.org/wiki/Buddhabrot
Technologies

- What to use to make computer graphics?
- 2D graphics? 3D graphics?
- Any previous experience?
Technologies

- Basic I
 - Basic II
 - Game Engines
Technologies

Lower level technologies and libraries

JavaScript

WebGL

Three.js

Basic I

Basic II

Game Engines
Technologies

Lower level technologies and libraries

JavaScript

C++

WebGL

Three.js

Basic I

Basic II

Game Engines
Technologies

Lower level technologies and libraries

JavaScript

WebGL

Three.js

C++

C/C++

OpenGL

Allegro

High level software

Basic I

Basic II

Game Engines
2D Technologies

Basic I, Practice Session Group 1

Basic I, Practice Session Group 2
3D Technologies

- JS
- Three.js
- WebGL
- Language
- Library
- API

- C/C++
- GLFW,
- glm
- OpenGL
- Language
- Library
- API

Basic I, Practice Session Group 1

Basic I, Practice Session Group 2
OpenGL, WebGL

- API-s for communicating with the GPU drivers.
- WebGL based on OpenGL ES 2 (Embedded Systems).
- GLSL (Shader Language) is used to program code executed on the GPU.

It is similar to the C language.
Standard Graphics Pipeline

- **Construct geometry**
- **Define transformations**
- **Assign material properties**...

Vertex Transformations

Vertex Shader
- Object’s local space → viewport space

Culling & Clipping
- Determine front-facing triangles
- Determine which vertices are visible

Rasterization
- Fill the triangle with fragments

Fragment Shading
- Calculate correct color values

Visibility Tests
- Is the fragment visible?
- Blend together multiple fragments

Blending
Construct geometry
Define transformations
Assign material properties
...

Vertex Transformations

Vertex Shader
Object's local space → viewport space

Culling & Clipping
Determine front-facing triangles
Determine which vertices are visible

Rasterization
Fill the triangle with fragments

Fragment Shading
Calculate correct color values

Visibility Tests
Is the fragment visible?

Blending
Blend together multiple fragments
Geometry

- Everything starts with the geometry
- Geometry defines the 3D objects in the scene
Geometry

- Although a cube has only 6 faces, we define it as a set of 12 triangles (12 faces).
- Why triangles?
Geometry

- Triangle very useful scientific facts:
 - Triangle vertices always form a plane
 - Every polygon can be converted to triangles
 - Triangles are easy to rasterize
 - Triangles are convex and simple
 - Three vertices always form a convex and simple triangle

Simple polygons are specific things
Geometry

• **Convex polygon** (*kumer hulknurk*) —

1) All convex combinations of the vertices are inside the polygon
2) Straight paths to all vertices from any point inside the polygon, are also inside the polygon
3) The polygon is equal to its convex hull
4) All interior angles are $\leq 180^\circ$
Geometry

- **Simple polygon** (*lihtne hulknurk*) – no intersecting edges

- What is the difference between those triangles?
Geometry

- Coordinate system can be left- or right-handed.
- We usually use the right-handed system.

See also: https://twitter.com/FreyaHolmer/status/644881436982575104
Geometry

- In a right-handed coordinate system, the positive direction of an angle is counter-clockwise.

This means that the order of the polygon vertices will define a front face and a back face.
What did you learn today?

What more would you like to know?

Next time: Geometry
(points, vectors, coordinate systems, ...