Soft body physics and fracture generation

Erich Jagomägis
What is a soft body?
What is not a soft body

- Rigid body
- Fluid
- Particle system
Soft body properties

- Deformable
- Retains original shape
- Expensive to compute!
Types of soft bodies

- Rope (1D)
- Cloth (2D)
- Object (3D)

Examples
Example
So... How do they work?

- Dark Magic
- Sacrifices of innocent souls
- <Insert mom joke here>
- Mathematician tears
Models

- Spring-mass model
- Finite element simulation
- Shape matching
- .. apparently many others.
Whatever model works on principle

- A set of constraints - an equation system for each point
- A solver that iterates until constraints are satisfied
- A lot of parameters
 - For material
 - For solver
Let's focus on spring/mass model
Let's focus on spring/mass model

- Mass
- Position
- Metadata (e.g., previous position)
- Velocity
- Inertia
- Angular Velocity
- ...and much more
Let's focus on spring/mass model

Spring

- Rest length
- Min length
- Max length
- Force
- Dampening
- Stiffness
Let's focus on spring/mass model

Example 1

Example 2

Example 3
Spring/Mass model issues

- How do you structure the object?

- Issues with collision detection
Example of exhaustive approach
Achievements

Crash Test
Nvidia Flex
Fracture generation
Fracturing models

- Premade fractured model
- Fracture mapping
- Real-time fracture generation
 - Scientifically plausible
 - Rough approximation
Premade fractured model

- Object comes as a collection of fractured pieces
- Pieces are glued together
- More mesh for graphics component to handle
- Less data needed for physics simulation
- Either ignore or take into account point of impact
Fracture mapping

- Model comes with a fracture mapping
- Upon impact, fracture mapping is used to decompose object
- Most commonly used
 - Blender
 - Apex library
 - Unity
Fracture mapping
Real time fracture generation

- Ignoring point of impact vs taking it into account
- Some algorithm is used to iteratively generate fractures
- Most computationally expensive
Real time fracture generation: Voronoi
Another example
Real time fracture refinement
Real time fracture refinement

Figure 4: Modified material strength field. By subtracting an estimated stress field in (b) from a procedurally generated strength field in (a), we generate a modified material strength field in (c) to model the fractures of a collapsing brick wall.
A cool approach
Another cool approach
Another cool approach (2)
Another cool approach: Result
Boiling it down

- Detect impact
- Figure out how to fracture (mapping or some algorithm)
- Use fractures to split mesh into parts
- Add the parts to the scene
- Calculate velocities, inertia, mass etc.
- Do it in a single render cycle or several.
Cluster Trucks
Discussion