Computer Graphics

- Graphical illusion via the computer
- Displaying something meaningful (inc art)
Math

- Computers are good at... computing.
- To do computer graphics, we need math for the computer to compute.
- Geometry, algebra, calculus.

\[
\begin{bmatrix}
 a & b & c & d \\
 e & f & g & h \\
 i & j & k & l \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
=
\begin{bmatrix}
 ax + by + cz + d \\
 ex + fy + gz + h \\
 ix + jy + kz + l \\
 1
\end{bmatrix}
\]
For actually creating and manipulating objects in 3D we need:

- Analytic geometry – math about coordinate systems
- Linear algebra – math about vectors and spaces
Point

- Simplest geometry primitive
- In homogeneous coordinates:
 \[(x, y, z, w), \ w \neq 0\]
- Represents a point \((x/w, y/w, z/w)\)
- Usually you can put \(w = 1\) for points
- Actual division will be done by GPU later
Line (segment)

- Consists of:
 - 2 endpoints
 - *Infinite* number of points between
- Defined by the endpoints
- Interpolated and rasterized in the GPU
Triangle

- Consists of:
 - 3 points called vertices
 - 3 lines called edges
 - 1 face

- Defined by 3 vertices

- Face interpolated and rasterized in the GPU

- Counter-clockwise order defines front face
Why triangles?

- They are in many ways the simplest polygons
 - 3 different points always form a plane
 - Easy to rasterize (fill the face with pixels)
 - Every other polygon can be converted to triangles
- OpenGL used to support other polygons too
 - Must have been:
 - Simple – No edges intersect each other
 - Convex – All points between any two points are inner points
Examples of polygons
OpenGL < 3.1 primitives

Figure 2-7 Geometric Primitive Types

OpenGL Programming Guide 7th edition, p49
After OpenGL 3.1

<table>
<thead>
<tr>
<th>Primitive Type</th>
<th>OpenGL Token</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>GL_POINTS</td>
</tr>
<tr>
<td>Lines</td>
<td>GL_LINES</td>
</tr>
<tr>
<td>Line Strips</td>
<td>GL_LINE_STRIP</td>
</tr>
<tr>
<td>Line Loops</td>
<td>GL_LINE_LOOP</td>
</tr>
<tr>
<td>Independent Triangles</td>
<td>GL_TRIANGLES</td>
</tr>
<tr>
<td>Triangle Strips</td>
<td>GL_TRIANGLE_STRIP</td>
</tr>
<tr>
<td>Triangle Fans</td>
<td>GL_TRIANGLE_FAN</td>
</tr>
</tbody>
</table>

Figure 3.1
Vertex layout for a triangle strip

Figure 3.2
Vertex layout for a triangle fan

In the beginning there were points

- Now that we can define our geometric objects, what next?
- We want to move our objects!

Luckily GPU will do this work for us.
Transformations

• It turns out that homogeneous coordinates allows us to easily do:
 • Linear transformations
 – Scaling, reflection
 – Rotation
 – Shearing
 • Affine transformations
 – Translation (moving / shifting)
 • Projection transformations
 – Perspective
 – Orthographic

Actually these we could do without homogeneous coordinates...
This too...
Transformations

- Every transformation is a function
- As you remember from Algebra, linear functions can be represented as matrices

\[
f(v) = \begin{pmatrix} 2 \cdot x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}
\]

\[v \in \mathbb{R}^3\]

\[v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}\] Column-major format

Linear function, which increases the first coordinate two times.

Same function as a matrix
Transformations

- GPU-s are built for doing transformations with matrices on points (vertices).
- Remember, computers are made for computing.
- Linear transformations satisfy:

\[f(a_1 x_1 + ... + a_n x_n) = a_1 f(x_1) + ... + a_n f(x_n) \]

We don't use homogeneous coordinates at the moment, don't worry, they'll be back...
Scaling

• Redefines the basis vectors as some multiple of the previous basis vectors.

\[
\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} \quad \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1.5 \\ 1.5 \end{pmatrix} = \begin{pmatrix} 3 \\ 1.5 \end{pmatrix}
\]

These coordinates are in the old basis.
Scaling

• In general we could scale each axis

\[
\begin{pmatrix}
 a_x & 0 & 0 \\
 0 & a_y & 0 \\
 0 & 0 & a_z \\
\end{pmatrix}
\]

- \(a_x \) – x-axis scale factor
- \(a_y \) – y-axis scale factor
- \(a_z \) – z-axis scale factor

• If some factor is negative, this matrix will reflect the points from that axis. Thus we get reflection.

What happens to out triangles when an odd number of factors are negative?
Shearing

- Not much used by itself, but remember it for translations later.
- Tilts only one axis.
- Squares become parallelograms.

\[
\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}
\]
Shearing

- **Shear-y**, we tilt parallel to y axis by angle φ counter-clockwise
 \[
 \begin{pmatrix}
 1 & 0 \\
 \tan(\varphi) & 1
 \end{pmatrix} \begin{pmatrix}
 x \\
 y
 \end{pmatrix} = \begin{pmatrix}
 x \\
 y + \tan(\varphi) \cdot x
 \end{pmatrix}
 \]

- **Shear-x**, we tilt parallel to x axis by angle φ clockwise
 \[
 \begin{pmatrix}
 1 & \tan(\varphi) \\
 0 & 1
 \end{pmatrix} \begin{pmatrix}
 x \\
 y
 \end{pmatrix} = \begin{pmatrix}
 x + \tan(\varphi) \cdot y \\
 y
 \end{pmatrix}
 \]
Rotation

- Shearing rotated only one axis
- Also changed the size of the basis vector
- Can we do better?

Did you notice that the columns of the transformation matrix show the coordinates of the new basis vectors?
\[e'_0 = (|a|, |b|) = (\cos(\alpha), \sin(\alpha)) \]
\[e'_1 = (|a'|, |b'|) = (-\sin(\alpha), \cos(\alpha)) \]
\[\cos(\alpha) = \frac{|a|}{|e'_0|} = \frac{|a|}{1} = |a| \]
Rotation

- So if we rotate by α in counter-clockwise order in 2D, the transformation matrix is:

$$
\begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) \\
\sin(\alpha) & \cos(\alpha)
\end{pmatrix}
$$

- In 3D we can do rotations in each plane (xy, xz, yz), so there can be 3 different matrices.
Rotation

- To do a rotation around an arbitrary axis, we can:
 - Rotate that axis to be the x-axis
 - Rotate around the new x-axis
 - Invert the first rotations (move the old x-axis back)

- OpenGL provides a command for rotating around a given axis.

- Often quaternions are used for rotations.

Quaternions are elements of a number system that extend the complex numbers...
Do we have everything now?

- We can scale, share and rotate our geometry around the origin...

What if we have an object not centered in the origin?
Translation

• Imagine that our 1D world is located at y=1 line in 2D space.

• Notice that all the points are in the form: \((x, 1)\)
Translation

• What happens if we do shear-x(45°) operation on the 2D world?

• Everything in our world has moved magically one x-coordinate to the right...

\[
\tan(45°) = 1
\]
Translation

• What if we do shear-x(63.4°)?

\[\tan(63.4°) = 2 \]

• Everything has now moved 2 x-coordinates to the right from the original position

• We can do translation (movement)!
Translation

- When we represent our points in one dimension higher space, where the extra coordinate is 1, we get to the **homogeneous** space.

\[
\begin{pmatrix}
1 & x_t \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
1
\end{pmatrix} =
\begin{pmatrix}
x + x_t \\
1
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 0 & x_t \\
0 & 1 & y_t \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
1
\end{pmatrix} =
\begin{pmatrix}
x + x_t \\
y + y_t \\
z + z_t
\end{pmatrix}
\]
Transformations

- This together gives us a very good toolset to transform our geometry as we wish.

\[
\begin{pmatrix}
a & b & c & x_t \\
d & e & f & y_t \\
g & h & i & z_t \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
1
\end{pmatrix} =
\begin{pmatrix}
ax + by + cz + x_t \\
dx + ey + fz + y_t \\
gx + hy + iz + z_t \\
1
\end{pmatrix}
\]

Used for perspective projection...
Multiple transformations

- Everything starts from the origin!
- To apply multiple transformations, just multiply matrices.
Multiple transformations

Our initial geometry defined by vertices: (-1, -1), (1, -1), (1, 1), (-1, 1)
Multiple transformations

\[
\begin{pmatrix}
\cos(45^\circ) & -\sin(45^\circ) & 0 \\
\sin(45^\circ) & \cos(45^\circ) & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
Multiple transformations

\[
\begin{pmatrix}
1 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}
\]
Multiple transformations

- We can combine the transformations to a single matrix.

\[
\begin{pmatrix}
1 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\cos(45^\circ) & -\sin(45^\circ) & 0 \\
\sin(45^\circ) & \cos(45^\circ) & 0 \\
0 & 0 & 1
\end{pmatrix}
=
\begin{pmatrix}
\cos(45^\circ) & -\sin(45^\circ) & 4 \\
\sin(45^\circ) & \cos(45^\circ) & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

- This also works for combining different linear transformations, but the resulting matrix isn't that clear...

- Order of transformations / matrices is important!

- http://cgdemos.tume-maailm.pri.ee
Now we know how it's supposed to go...
OpenGL

- GPU API / middleware
- Set of commands that program can give to GPU
- Supported in many languages

Send vertex data
Send transformations
Draw!
WebGL

- GPU API in JavaScript
- Supported by major browsers
- THREE.js – Higher level library to ease your coding: http://threejs.org/docs/

Send vertex data

Send transformations

Draw!
The Setup

Sending vertex data to the GPU
Vertex Array Object (VAO)

- An object to hold an data arrays for vertices

```c
GLuint vaoHandle;
glGenVertexArrays(1, &vaoHandle);
glBindVertexArray(vaoHandle);

// Generate and bind vertex buffers - VBO-s
// set data for position, color etc

glBindVertexArray(0);
```
Vertex Buffer Object (VBO)

- Buffer for hold one vertex data array

```c
GLuint vaoHandle;
glGenVertexArrays(1, &vaoHandle);
glBindVertexArray(vaoHandle);

GLuint vboHandle;
glGenBuffers(1, &vboHandle);
glBindBuffer(GL_ARRAY_BUFFER, vboHandle);
glBufferData(GL_ARRAY_BUFFER,
             sizeof(GLfloat) * vertexCount, vertexDataArray, GL_STATIC_DRAW);
...
```
Vertex Attribute

- Variable in the shader, which points to the data

```c
GLuint vboHandle;
glGenBuffers(1, &vboHandle);
glBindBuffer(GL_ARRAY_BUFFER, vboHandle);
glBufferData(GL_ARRAY_BUFFER,
             sizeof(GLfloat) * vertexCount, vertexDataArray, GL_STATIC_DRAW);

GLuint loc = glGetUniformLocation(shaderProgram, name);
glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc, elementsPerVertex, GL_FLOAT, GL_FALSE, 0, 0);
```

Each vertex gets their own values for the same attribute variable.
VBO: Element Array Buffer

• Buffer for indices to map the vertices → faces

```c
GLuint loc = glGetAttribLocation(shaderProgram, name);
glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, 0, 0);

glGenBuffers(1, &vboHandle);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboHandle);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
             sizeof(GLfloat)*indexCount, indices, GL_STATIC_DRAW);

glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
```
Drawing

• **Each frame** we tell the GPU to draw

```cpp
std::stack<glm::mat4> ms;
ms.push(glm::mat4(1.0));

ms.push(ms.top());
ms.top() = glm::rotate(ms.top(), ...);
ms.top() = glm::translate(ms.top(), ...);
GLint loc = glGetUniformLocation(prog, matrixName);
glUniformMatrix4fv(loc, 1, GL_FALSE, glm::value_ptr(ms.top()));

glBindVertexArray(vaoHandle);
glDrawElements(GL_TRIANGLES, vertexCount, GL_UNSIGNED_BYTE, 0);
ms.pop();
```
The Scene

- Useful to think of the scene as a tree

```
M

Scene

RightHand

LeftHand

M*A

M*A*B

M*A*B*C

Fingers

M*A

M*A*B

M*A*B*C

...
Use of the Matrix Stack

- More complex geometry for a single object

```cpp
std::stack<glm::mat4> ms;
ms.push(glm::mat4(1.0));
ms.push(ms.top());
DrawPalm...
(transform top, send matrix, draw)
ms.push(ms.top());
DrawFingers...
(transform top, send matrix, draw)
ms.pop();
ms.pop();
```
Old and new OpenGL?

- It used to be different before OpenGL 3.
- Everything old still works in compatibility mode.

Prior to OpenGL 3
- `glBegin(...)`
- `glVertex(...)`
- `glEnd(...)`
- `glTranslate(...)`
- `glRotate(...)`
- `glScale(...)`
- `glMaterial(...)`

OpenGL 3+
- Vertex Array Object (VAO)
- Vertex Buffer Object (VBO)
- Use other Matrix library (eg GLM)
- Send your matrices to shaders
- Vertex Buffer Object (VBO)

Good tutorials: [http://antongerdelan.net/opengl/](http://antongerdelan.net/opengl/)
Next time...

- Graphics pipeline in more detail
- How to define color for our geometry?
- Vertex and fragment shaders
- What else could be done?

Our geometry defined by 4 vertices
A parallelogram...