Agenda

- Introduction
- Core Terminologies (Descriptive)
- Spritesheet Animation
- Unity Anima-2D
- A Short Demonstration
- Summary
Goals:

By the end of the presentation you would have:

- Good concept of skeletal animation pipeline
- Basic knowledge to work with 2D sprites
- A working package to get hands on experience
Introduction

Have you ever wondered how a character walks, jumps, run or do many more human like actions in games?

- Yes they are animations
- How are they made?
Introduction

- Major 3D softwares like 3ds Max and Maya have built-in functionality of Bone System.
- Models are rigged with boning and are exported as complete package.
Introduction

• 3D games today use these pre-rendered animations which are exported with the 3D model.
• You import the model as well as the animations which are provided with it.
• Not just Humanoid but other Generic animations as well.
Confused?
Let's Talk about Core Terminologies

- Bones
- Joints
- Inverse Kinematics (IK)
- Mesh Deformation (Skinning)
- Rig (Rigging)
How many bones should be here..
How many bones should be here..

- 2 Right?

Source: http://apprize.info/programming/direct3d/5.html
Bones

- A `GameObject` (type of object) in 3d/2d world space
- Represents set of vertices.
- Independently movable.
- Can have parent child relationship in hierarchy.
- In-fact no physical and calculable presence in a scene.
Two Gameobjects

Source: http://apprize.info/programming/direct3d/5.html
Joints

• Building block of skeletons
• Point of articulation (contact between bones)
• No Shape
• Bones attached with each other through joint.
Joints

• Consider them as hooks on both sides of a stick..
Joints Types

- Ball Joint
- Universal Joint
- Hinge Joint
Joints Types

• Ball Joint

A ball joint is a joint that can rotate about all three of its local axes. For example, the human shoulder is a ball joint.
Joints Types

• Universal Joint

A universal joint is a joint that can rotate about only two of its local axes. The human wrist is a good example of a universal joint, though the wrist has limitations on the extent it can rotate.
Joints Types

• Hinge Joint

A hinge joint is a joint that can rotate about only one of its local axes. For example, the human knee is a hinge joint.
Joint Attributes

- Limits
- Degree of freedom
- Damping
- Stiffness
Joint Attributes

• Limits

Joint Limit Information attributes specify the minimum and maximum translation, rotation, and scaling values for a joint. For example elbow rotation.

• Degree of Freedom

The Degrees of freedom determines which local axes the joints can rotate.
Joint Attributes

• **Damping**

 Joint *damping* applies resistance to a joint as it approaches its joint limits. Instead of the joint abruptly stopping when it reaches its limits, you can smooth it with damping.

• **Stiffness**

 Joint *stiffness* specifies a joint’s resistance to rotation during inverse kinematics animations.
Inverse Kinematics (IK)
Inverse Kinematics (IK)

- A very powerful tool in game development.
- Originated from Robotics
- Purpose is to calculate positions for a joint system so that it will reach a certain end goal.
Inverse Kinematics (IK)

For the idea let’s just define forward kinematics first.

• I have a starting point (for example, the equivalent of your shoulder on your arm),
• The length of all the parts,
• The angles between those parts,

I should be able to calculate the end position with some mathematical function right?
Inverse Kinematics (IK)

- Forward Kinematics: Example
Inverse Kinematics (IK)

Inverse Kinematics isn’t about getting the end effector.

- I have the endpoint or the goal.
- I want to find a configuration of joint system.
- So that it will reach the goal.

In other words the angles on each joint must be calculated.
Inverse Kinematics (IK)

- Inverse Kinematics: Example
• A Better Demonstration
FABRIK Algorithm: Forward and Backward Reaching IK

Two Stages:

• Sets the end position at the target.
• Work backward and forward by finding the line between the most recently updated point and next point in chain.
FABRIK Algorithm: Forward and Backward Reaching IK
FABRIK Algorithm: Forward and Backward Reaching IK

- Moving one point
- Moving the whole chain
FABRIK Algorithm: Forward and Backward Reaching IK

Moving one point

Moving the whole chain

\(P_1' \)
\(P_1'' \)
\(P_2'' \)
\(P_2' \)
\(P_3' \)
\(P_3'' \)
\(P_4' \)
\(P_4'' \)
\(\text{Target} \)

\(d_1 \)
\(d_2 \)
\(d_3 \)
Inverse Kinematics

• There are many other robust algorithms other than fabric but I’ll stop here because we understood the basic idea behind computation of Inverse Kinematics.

http://www.academia.edu/9165835/FABRIK_A_fast_iterative_solver_for_the_Inverse_Kinematics_problem
NOT SO FAST..!!!

Why do we really need Inverse Kinematics?
Mesh Deformation (Skinning)

- A 3D model is built on mesh of polygons.
- Polygons have vertices.
- The goal of mesh deformation is to move vertices.

Cool Demos:
- http://www.alecjacobson.com/weblog/media/skinning-demo.gif

Source:
Mesh Deformation (Skinning)

- Envelopes
- Painted Weight
- Numerical Assignment (Advanced)

Book: Digital Character Animation-3
Rigging (The Whole Process)

• Well everything we understood previously is called rigging.
• To make it simple it’s a process of creating skeleton so that the model or character can move.
• A very technical and overwhelming process.
Material: Advanced Methods in Computer Graphics
So Far So Good….

- We understood how bone skeleton works in general.
- The idea behind this whole discussion was to introduce 2D Bone Skeletal in Unity Engine.
- You know the basics this will be easy now…
Spritesheet Animation (Naive Method)

• Multiple sprites on single sheet (Better optimization)
• Swap images rapidly to see the animation.
Spritesheet Animation (Naive Method)

- Large Storage
- Inflexible
- Not Smooth
- Great Performance
Unity Anima-2D (Skeletal Animation)

- Small Textures
- Flexible
- Smooth
- Enabling Skinning
- Enable Procedural Animations
- CPU/GPU Intensive
Unity Anima-2D (Skeletal Animation)

• We need
 • Just Sprites nothing else

• Wait… What about Skinning?
 • Precise Geometry
 • Bones, joints, Inverse kinematics
 • High quality weights
Unity Anima-2D Components

- Bone2D
- Sprite Mesh Instance
- IK Limb 2D
- IK CCD2D
- Pose Manager
Unity Anima-2D Components

- Bone2D
Unity Anima-2D Components

• Sprite Mesh Instance
Unity Anima-2D Components

• Ik Limb 2D
Unity Anima-2D Components

- Ik CCD2D
Unity Anima-2D Components

- Pose Manager
Demo Time ;)
1. Bones and Vertices: http://apprize.info/programming/direct3d/5.html

2. Vertices:

3. Joints:

4. Inverse Kinematics:
References and Links

5. Anima-2D:
 • https://anima2d.com/documentation
 • https://www.assetstore.unity3d.com/en/#!/content/45879
Thank You 😊