Coming up today

- Keyframe animation
- Procedural animation for basic character animation
 - Procedural animation with keyframe animation
 - Inverse kinematics
- Procedural animation as a broader field
 - Artificial life animation
 - Physics based modelling and animation
Basic keyframe animation

- Animator draws or models the starting and ending points of a transition, called keyframes, and sets their position in time.
- The remaining frames in between 2 keyframes are interpolated from them.
- The animator is in control of everything at every point in time.
Basic keyframe animation problems

- Transitions in interactive setting
 - Blend walking and running animation?
 - Create a walk ↔ run transition animation?
 - 15 animations - 105 blends required

- Unrealistic movement
 - No proper feedback from the environment
 - Not acceptable anymore
Procedural Animation

- a type of computer animation, used to automatically generate animation in real-time to allow for a more diverse series of actions than could otherwise be created using predefined animations
- Animator not in control of everything anymore
- a) Integrated with keyframe animation
 - Roughly follows keyframes
 - Change dynamically
 - e.g. getting hit while running, going up the stairs
- b) Fully procedural animation
 - Initial parameters and some sort of input parameters are provided to control the animation
 - Initial position; forces, torques in time
Keyframe + procedural animation

- Dynamic combining of multiple animations
 - Lower body running
 - Upper body swinging a sword
 - Body recoiling to a blow

- What you can achieve with just 14 keyframes and procedural animation:
To actually feel connected to the world...

- animated objects must physically be connected to it
 - Feet position should depend on the surface
 - Running into a wall
 - Climbing an object
- To do this, a technique called inverse kinematics is used
- First, we must understand what are rigging and kinematic chains
Rigging

- Digital skeleton
 - Parts that do not move relative to themselves
 - Joints connecting the parts
- Has an hierarchy called kinematic chain
 - E.g. abdomen → torso → left shoulder → left upper arm → left lower arm → palm → thumb
Inverse kinematics

- The mathematical process of recovering the movements of an object in the world from some other data
- When a finger is repositioned, what should rest of the body do?
 - Jacobian transpose method
 - Pseudoinverse method
 - Damped least squares method
 - Singular value decomposition method

- https://www.youtube.com/watch?v=NxoIoW0mRtg
Fields of procedural animation

● Artificial life
 ○ Behavioral animation
 ○ Artificial evolution
 ○ Branching object generation
 ○ Facial features

● Physics-based modeling and animation
 ○ Particle systems
 ○ Rigid body dynamics
 ○ Fluid dynamics
 ○ Fur & hair dynamics
 ○ Flexible dynamics
 ■ Cloth
 ■ Ragdolling
Artificial life

- *Deals with things that are virtually alive*
- Behavioral animation
 - Simulates interactions of artificial lives
 - Flocking, predator-prey, virtual human behaviors
 - https://www.youtube.com/watch?v=M028vafB0I8
- Artificial evolution
 - Evolution of artificial life forms
 - Artificial life forms reproduce and mutate over time
- Branching object generation
 - Generating plants, trees etc and simulating their behaviour
 - L-systems, BOGAS
- Facial features
 - Mostly replaced with mo-cap and post-editing
Physics based modeling and animation

- *Deals with things that are not alive*
- Particle systems
 - Simulate behaviors of fuzzy objects, such as clouds, smoke, fire and water
- https://www.youtube.com/watch?v=MPV3B4kTFL
Physics based modeling and animation

- **Rigid body dynamics**
 - Simulates dynamic interaction among rigid objects
 - Takes into account various physical characteristics
 - Elasticity, friction, mass
 - https://www.youtube.com/watch?v=VSQhvu8fZ0U

- **Fluid dynamics**
 - Simulates flows, waves and turbulence of water and other liquids
 - https://www.youtube.com/watch?v=U3acQ5dDKEs
Fur & hair dynamics

- It's hard to get it right: https://www.youtube.com/watch?v=FexDVPd08qY
- For real time: AMD's TressFX and NVIDIA's HairWorks
 https://www.youtube.com/watch?time_continue=83&v=qXRJZ1z3Fsg
HairWorks

- https://www.youtube.com/watch?v=VFWr44ZIEZc
Flexible dynamics: cloth

- Simulates behaviors of flexible objects, e.g. clothes
- Geometric method
 - Only good for static frames
 1. Cloth divided into vertices
 2. Vertices positions are calculated
 3. Vertices are connected with curves
- Physical method
 - Cloth is treated as a vertex grid connected by springs
 - Each vertex has a point mass
 - Mechanical equilibrium is applied
- Particle/energy method
 - Advancement of physical method
 - All vertices interact with each other directly
 - Energy interactions determine the shape

https://www.youtube.com/watch?v=KBfxnayllOY
Flexible dynamics: ragdolling

- Commonly used in place of static animations for falling/death etc
- Verlet integration
 - Bones have simple constraints to bones further away
- Inverse kinematics
 - Animation is played, at end IK applied to force a valid position
- Blended ragdolling
 - Animation blended with physics
- Fully procedural
 - Multi-layered physical models
 - Unique every time
- https://www.youtube.com/watch?v=6rtOWhF6iw8
Some more videos

- Animating a very realistic horse
 https://www.youtube.com/watch?v=YncZtLaZ6kQ
- Fully procedurally animated and evolving bipedal creatures (no keyframes):
 https://www.youtube.com/watch?v=pgaEE27nsQw
- CGI animation breakdown
 https://www.youtube.com/watch?v=on21u4BsuK0
Thanks for listening!

https://www.youtube.com/watch?v=bYl7N4U-JMI