Computer Graphics Seminar

MTAT.03.305

Fall 2018

Raimond Tunnel
Contact Information

- Raimond Tunnel – jee7@ut.ee
Organizational Information

- 16 seminars:
 - 4 introductory lectures
 - 6 student presentations
 - 4? special events
 - 1 ICS Day

- 1 project demos
Organization

• 16 seminars
 Attendance: ~24h = 0.85 credits

• 1 seminar
 Preparation: 56h = 2.1 credits
 Conducting: 1.5h = 0.05 credits
Organization

- 16 seminars
 Attendance: ~24h = 0.85 credits

- 1 seminar
 Preparation: 56h = 2.1 credits
 Conducting: 1.5h = 0.05 credits
Organization

- 16 seminars
 Attendance: ~24h = 0.85 credits

- 1 seminar
 Preparation: 56h = 2.1 credits
 - Find suitable material (8h)
 - Read and understand the material (25h)
 - Synthesize a logical approach to the topic (10h)
 - Create a presentation (10h)
 - Practice the presentation (3h)

 Conducting: 1.5h = 0.05 credits
Organization

- 16 seminars
 Attendance: \(~24h = 0.85\) credits

- 1 seminar
 Preparation: \(56h = 2.1\) credits
 - Find suitable material (8h)
 - Read and understand the material (25h 10h)
 - Synthesize a logical approach to the topic (40h 2h)
 - Create a presentation (40h 5h)
 - Practice the presentation (3h)
 Conducting: 1.5h = 0.05 credits
 - Implement a demo (28h)
What am I even doing here?
What do I see?
What about this one?
Or this one?
Or this one?
This one should be easy...
The Seminar

- Explore an interesting CG topic
The Seminar

- Tackle a difficult subject together
The Seminar

- Tell (teach) others about your discoveries
How do I choose a topic?
How do I choose a topic?

- What do you need to understand for your thesis?
How do I choose a topic?

- What do you need to understand for your thesis?
- What knowledge will benefit you after the uni?

Ninja Theory developer talking about atmospheric VFX in Hellblade: https://www.youtube.com/watch?v=jdZ1s3FHTFI
How do I choose a topic?

- What do you need to understand for your thesis?
- What knowledge will benefit you after the uni?
- What did you come here to learn about CG?
How do I choose a topic?

- What do you need to understand for your thesis?
- What knowledge will benefit you after the uni?
- What did you come here to learn about CG?
- What do you find interesting in CG?
How do I choose a topic?

- What do you need to understand for your thesis?
- What knowledge will benefit you after the uni?
- What did you come here to learn about CG?
- What do you find interesting in CG?

John Carmack

Procedural generation by Andreas Sepp
What is this?
Post-Processing: Bloom effect

Need for Speed: Most Wanted

Elephant's Dream
Hitman: Absolution

Warframe: https://www.youtube.com/watch?v=gYHxhlvEyHk
Post-Processing: Bloom effect

Elder Scrolls 3: Oblivion
Back to the main track
How to find materials?
How to find materials?

- The Interwebs.
 - Examples of some quality web articles:
 - GTA V Graphics Study by Adrian Courreges http://www.adriancourreges.com/blog/2015/11/02/gta-v-graphics-study/
 - Article lists by Jendrik Illner https://www.jendrikillner.com/post/
 - Just Google and be critical about what you find!
How to find materials?

- The Interwebs.
- UT library databases.
 - https://utlib.ut.ee/andmebaasid
 - ACM SIGGRAPH
 - IEEE Transactions on Visualization and CG
 - IEEE Transactions on Games

Be critical here as well...
How to find materials?

- The Interwebs.
- UT library databases.
- Books.
 - Fundamentals of Computer Graphics
 - GPU Pro 1-7, GPU Zen
 - Many-many others...
Conditions

<table>
<thead>
<tr>
<th>First time student</th>
<th>Choose any CG-related topic you want!</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSc, MSc</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Returning student</th>
<th>Your topic should be related to several scientific articles or books.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc, PhD</td>
<td></td>
</tr>
</tbody>
</table>

- In either case, ensure you benefit from the topic!
- Can be the same that others have done before.
Previously...

PREVIOUSLY, ON SCRUBS...
Oh Wait, This Ain't Scrubs...
Texturing
Use Case: Ostriv
Procedural Generation
Rendering Many Units

View Frustum Culling
- Geometry outside of the view frustum is removed

Backface Culling
- Backfacing geometry is removed

Occlusion Culling
- Occluder
- Occludee
- Occluded geometry is removed from further processing

Images of leaves and textures.
Use Case: RoomAlive
Still confused?
World is a vast and mysterious place!

When you have a topic...

- Look for materials
- Investigate, research
- Find examples
- Try it out yourself
- Present your findings
- Engage others
 - Discussion
 - Interactive demo
 - Workshop
Creating a Presentation
Creating a Presentation

Ensure you understand what you put on the slide!

\[L_o = L_e + \int_{\Omega} L_i \cdot f_r \cdot \cos \theta \cdot d\omega \]
Creating a Presentation

Ensure you understand what you put on the slide!

Use big fonts, use your slide space optimally.
Creating a Presentation

Ensure you understand what you put on the slide!

Use big fonts, use your slide space optimally.
Creating a Presentation

Ensure you understand what you put on the slide!
Use big fonts, use your slide space optimally.
Try to make the drawings, diagrams etc yourself.
Creating a Presentation

Ensure you understand what you put on the slide!

Use big fonts, use your slide space optimally.

Try to make the drawings, diagrams etc yourself.

Put drawings, diagrams etc on the slides!
Creating a Presentation

Ensure you understand what you put on the slide!
Use big fonts, use your slide space optimally.

Try to make the drawings, diagrams etc yourself.
Put drawings, diagrams etc on the slides!

Try to implement what you share.
Creating a Presentation

Ensure you understand what
Use big fonts, use your slide
Try to make the drawings, dia-
Put drawings, diagrams etc o
Try to implement what you sh

The quality should be on par with a thesis level.
Creating a Presentation

Ensure you understand what you put on the slide!
Use big fonts, use your slide space optimally.
Try to make the drawings, diagrams etc yourself.
Put drawings, diagrams etc on the slides!
Try to implement what you share.
The quality should be on par with a thesis level.
You are the master of your topic!
Creating a Presentation

- Ensure you understand what you put on the slide!
- Use big fonts, use your slide space optimally.
- Try to make the drawings, diagrams etc yourself.
- Put drawings, diagrams etc on the slides!
- Try to implement what you share.
- The quality should be on par with a thesis level.
- You are the master of your topic!
Want to do projects?

- **Computer Graphics Project** (MTAT.03.316)
 - 3 credits course
 - Consists entirely of a project
 - Work on your own idea throughout the semester
 - Roughly 6h per every 2 weeks
I don't even know where to start!?

- There will be 3 introductory lectures about the basics.

- Check out the topics from Computer Graphics:

 https://courses.cs.ut.ee/2017/cg/fall

- Check out the topics from the previous seminar:

 https://courses.cs.ut.ee/2017/cg-sem/fall/Main/Seminars
 https://courses.cs.ut.ee/2018/cg-sem/spring/Main/Seminars

- Find some online tutorial and try it out.
Questions?
List of some arbitrary topics

1. **Color blending** – What happens when there are transparent objects in your scene?
2. **Lighting models** – What are the common models? Where and when are they used?
3. **Texturing** – How can one sample from a texture? What kinds of artefacts may appear?
4. **Curves** – Why are they important in CG? What about curved surfaces?
5. **Global illumination** – Pick one or compare different methods: Radiosity, path tracing, photon mapping.
6. **Realtime realistic rendering** – Provide an overview of the common methods or pick some effect (light, wetness, fog, fur / hair) and find out how it's rendered realistically in real time.
7. **Non-photorealistic rendering** – Where is it used and how is it achieved? Realtime vs prerendered?
8. **Tessellation** – How can this be done in OpenGL 4?
9. **Post-processing effects** – What effects are there? When and how are they used?
10. **Procedural generation** – Where and how is it used? How to apply procedural textures to procedurally generated meshes?
List of some other topics

11. Physically-Based Shading – What is it? Why is it important to understand physical properties of materials for shading? What games / game engines use it?

12. Rendering in VR – What extra considerations are in VR? How do different technologies overcome them?

13. Vulkan / WebGL 2.0 – What is it for? Why is it useful? How to Vulkan / WebGL 2.0?

14. Subsurface scattering – What is it? How it is implemented? What does it solve?

15. Reflections and caustics – What are the modern techniques, which do those?

16. GLSL vs HLSL – What are the differences? How are both used?

17. Use case study – Find out in detail how graphics are done in one game or movie.

18. Motion capture – What are the difficulties today? Best budget setup for it?

19. Modern GPU architecture – How are GPU-s built today? What are they optimized for?

20. Graphics on consoles / smartphones – What limitations are there in consoles or embedded systems vs the PC? How to overcome them compared to the PC approach?