GerGebra

Computer Graphics Seminar

MTAT.03.305
Spring 2018

Raimond Tunnel

Computer Graphics

- Graphical illusion via the computer
- Displaying something meaningful (incl art)

THE THIRTEEMTH FLUOR

Math

- Computers are good at... computing.
- To do computer graphics, we need math for the computer to compute.
- Geometry, algebra, calculus.

$$
\left[\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y+c z+d \\
e x+f y+g z+h \\
i x+j y+k z+l \\
1
\end{array}\right]
$$

Math

- For actually creating and manipulating objects in 3D we need:
- Analytic geometry - math about coordinate systems
- Linear algebra - math about vectors and spaces

Skills for Computer Graphics

- Mathematical understanding $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot\binom{x}{y}=\binom{a x+b y}{c x+d y}$
- Geometrical (spatial) thinking
- Programming

GLuint vaoHandle;

gIGenVertexArrays(1, \&vaoHandle);
glBindVertexArray(vaoHandle)

- Visual creativity \& aesthetics

Point

- Simplest geometry primitive
- In homogeneous coordinates:

$$
(x, y, z, 1)
$$

$$
(x, y, z, w), w \neq 0
$$

- Represents a point (x/w, y/w, z/w)
- Usually you can put w=1 for points
- Actual division will be done by GPU later

Line (segment)

- Consists of:
- 2 endpoints
- Infinite number of points between
- Defined by the endpoints

- Interpolated and rasterized in the GPU

Line (segment)

- Consists of:
- 2 endpoints
- Infinite number of points between
- Defined by the endpoints

- Interpolated and rasterized in the GPU

Line (segment)

- Consists of:
- 2 endpoints
- Infinite number of points between
- Defined by the endpoints

- Interpolated and rasterized in the GPU

Triangle

- Consists of:
- 3 points called vertices
- 3 lines called edges
- 1 face
- Defined by 3 vertices

- Face interpolated and rasterized in the GPU
- Counter-clockwise order defines front face

Why triangles?

- They are in many ways the simplest polygons
- 3 different points always form a plane
- Easy to rasterize (fill the face with pixels)
- Every other polygon can be converted to triangles

Why triangles?

- They are in many ways the simplest polygons
- 3 different points always form a plane
- Easy to rasterize (fill the face with pixels)
- Every other polygon can be converted to triangles
- OpenGL used to support other polygons too
- Must have been:
- Simple - No edges intersect each other
- Convex - All points between any two points are inner points

Examples of polygons

OpenGL < 3.1 primitives

Figure 2-7 Geometric Primitive Types

OpenGL Programming Guide $7^{\text {th }}$ edition, p 49

After OpenGL 3.1

Table 3.1 OpenGL Primitive Mode Tokens

Primitive Type	OpenGL Token
Points	GL_POINTS
Lines	GL_LINES
Line Strips	GL_LINE_STRIP
Line Loops	GL_LINE_LOOP
Independent Triangles	GL_TRIANGLES
Triangle Strips	GL_TRIANGLE_STRIP
Triangle Fans	GL_TRIANGLE_FAN

FIgure 3.2 Vertex layout for a triangle fan

Figure 3.1 Vertex layout for a triangle strip

OpenGL Programming Guide $8^{\text {th }}$ edition, p89-90

In the beginning there were points

- We can now define our geometric objects!

In the beginning there were points

- We can now define our geometric objects!
- We want to move our objects!

World's ($0,0,0$)

Transformations

- Homogeneous coordinates allow easy:
- Linear transformations
- Scaling, reflection
- Rotation
- Shearing
- Affine transformations
- Translation (moving / shifting)
- Projection transformations
- Perspective
- Perspective
- Orthographic

Transformations

- Every transformation is a function
- As you remember from Algebra, linear functions can be represented as matrices

$$
\begin{aligned}
& f(v)=\left(\begin{array}{c}
2 \cdot x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \\
& \begin{array}{l}
\text { Linear function, which } \\
\text { increases the first }
\end{array} \\
& \begin{array}{l}
\text { Same function } \\
\text { as a matrix }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& v \in R^{3} \\
& v=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{aligned}
$$

Column-major format

Transformations

- GPU-s are built for doing transformations with matrices on points (vertices).

Transformations

- GPU-s are built for doing transformations with matrices on points (vertices).
- Linear transformations satisfy:

$$
f\left(a_{1} x_{1}+\ldots+a_{n} x_{n}\right)=a_{1} f\left(x_{1}\right)+\ldots+a_{n} f\left(x_{n}\right)
$$

We don't use homogeneous coordinates at the moment, but they will be back...

Linear Transformation Scale

Scaling

- Multiplies the coordinates by a scalar factor.

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \cdot\binom{x}{y} \quad\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \cdot\binom{1.5}{1.5}=\binom{3}{1.5}
$$

Scaling

- Multiplies the coordinates by a scalar factor.
- Scales the standard basis vectors / axes.

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \cdot\binom{1}{0}=\binom{2}{0}=e_{0}
$$

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \cdot\binom{0}{1}=\binom{0}{1}=e_{1}
$$

Scaling

- In general we could scale each axis
\(\left(\begin{array}{ccc}a_{x} \& 0 \& 0

0 \& a_{y} \& 0

0 \& 0 \& a_{z}\end{array}\right) \quad\)| $a_{x}-\mathrm{x}$-axis scale factor |
| :--- |
| $a_{y}-\mathrm{y}$-axis scale factor |
| $a_{\mathrm{x}}-\mathrm{z}$-axis scale factor |

- If some factor is negative, this matrix will reflect the points from that axis. Thus we get reflection.

Linear Transformation Shear

Shearing

- Not much used by itself, but remember it for translations later.
- Tilts only one axis.
- Squares become parallelograms.

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \cdot\binom{x}{y}
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \cdot\binom{0}{2}=\binom{0}{2} \\
& \left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \cdot\binom{1}{2}=\binom{1}{3}
\end{aligned}
$$

Shearing

- Shear-y, we tilt parallel to y axis by angle φ counter-clockwise

$$
\left(\begin{array}{cc}
1 & 0 \\
\tan (\varphi) & 1
\end{array}\right) \cdot\binom{x}{y}=\binom{x}{y+\tan (\varphi) \cdot x}
$$

- Shear-x, we tilt parallel to x axis by angle φ clockwise
$\left(\begin{array}{cc}1 & \tan (\varphi) \\ 0 & 1\end{array}\right) \cdot\binom{x}{y}=\binom{x+\tan (\varphi) \cdot y}{y}$

Linear Transformation

Rotation

Rotation

- Shearing moved only one axis
- Also changed the size of the basis vector
- Can we do better?

Did you notice that the columns of the transformation matrix show the coordinates of the new basis vectors?

Rotation

$$
\begin{aligned}
& e_{0}^{\prime}=(|a|,|b|)=(\cos (\alpha), \sin (\alpha)) \\
& e_{1}^{\prime}=\left(\left|a^{\prime}\right|,\left|b^{\prime}\right|\right)=(-\sin (\alpha), \cos (\alpha))
\end{aligned} \quad \cos (\alpha)=\frac{|a|}{\left|e^{\prime}{ }_{0}\right|}=\frac{|a|}{1}=|a|
$$

Rotation

- So if we rotate by α in counter-clockwise order in 2D, the transformation matrix is:
$\left(\begin{array}{cc}\cos (\alpha) & -\sin (\alpha) \\ \sin (\alpha) & \cos (\alpha)\end{array}\right)$
- In 3D we can do rotations in each plane (xy, xz, $y z)$, so there can be 3 different matrices.

Rotation

- To do a rotation around an arbitrary axis, we can:
- Rotate that axis to be the x-axis
- Rotate around the new x-axis -
- Invert the first rotations
(move the old x-axis back) $\left|\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos (\alpha) & -\sin (\alpha) & 0 \\ 0 & \sin (\alpha) & \cos (\alpha) & 0 \\ 0 & 0 & 0 & 1\end{array}\right|$
- OpenGL provides a command for rotating around a given axis.
- Often quaternions are used for rotations.

Quaternions are elements of a number system that extend the complex numbers...

Do we have everything now?

- We can scale, share and rotate our geometry around the origin...

What if we have an object not centered in the origin?

Affine Transformation

Translation

Translation

- Imagine that our 1D world is located at $y=1$ line in 2D space.

- Notice that all the points are in the form: $(x, 1)$

Translation

- What happens if we do shear-x $\left(45^{\circ}\right)$ operation on the 2D world?

- Everything in our world has moved magically one x -coordinate to the right...

```
tan(4\mp@subsup{5}{}{\circ})=1
```


Translation

- What if we do shear-x(63.4 ${ }^{\circ}$?

$$
\tan \left(63.4^{\circ}\right)=2
$$

- Everything has now moved 2 x-coordinates to the right from the original position
- We can do translation (movement)!

Translation

- When we represent our points in one dimension higher space, where the extra coordinate is 1 , we get to the homogeneous space.

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & x_{t} \\
0 & 1
\end{array}\right) \cdot\binom{x}{1}=\binom{x+x_{t}}{1} \\
& \left(\begin{array}{lll}
1 & 0 & x_{t} \\
0 & 1 & y_{t} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right)=\left(\begin{array}{c}
x+x_{t} \\
y+y_{t} \\
1
\end{array}\right)
\end{aligned}
$$

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & x_{t} \\
0 & 1 & 0 & y_{t} \\
0 & 0 & 1 & z_{t} \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x+x_{t} \\
y+y_{t} \\
z+z_{t} \\
1
\end{array}\right)
$$

Transformations

- This together gives us a very good toolset to transform our geometry as we wish.

Used for perspective projection...

Multiple transformations

- Everything starts from the origin!
- To apply multiple transformations, just multiply matrices.

Multiple transformations

Our initial geometry defined by vertices: $(-1,-1),(1,-1),(1,1),(-1,1)$

Multiple transformations

$$
\left(\begin{array}{ccc}
\cos \left(45^{\circ}\right) & -\sin \left(45^{\circ}\right) & 0 \\
\sin \left(45^{\circ}\right) & \cos \left(45^{\circ}\right) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Multiple transformations

$$
\left(\begin{array}{lll}
1 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Multiple transformations

- We can combine the transformations to a single matrix.

$$
\left(\begin{array}{lll}
1 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
\cos \left(45^{\circ}\right) & -\sin \left(45^{\circ}\right) & 0 \\
\sin \left(45^{\circ}\right) & \cos \left(45^{\circ}\right) & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\cos \left(45^{\circ}\right) & -\sin \left(45^{\circ}\right) & 4 \\
\sin \left(45^{\circ}\right) & \cos \left(45^{\circ}\right) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- This works for combining different affine transformations, but the result is hard to read...
- Order of transformations / matrices is important!
- http://cgdemos.tume-maailm.pri.ee

This in Practice?

OpenGL

- GPU API / middleware
- Set of commands that a program can give to GPU
- Supported in many languages

WebGL

- GPU API in JavaScript
- Supported by major browsers
- THREE.js - Higher level library to ease your coding: http://threejs.org/docs/

OpenGL and WebGL

OpenGL 3D API Family Tree

https://www.slideshare.net/Khronos_Group/open-standardsforgaming-nov13

The Setup

Sending vertex data to the GPU

Vertex Array Object (VAO)

- An object to contain data arrays for vertices

```
GLuint vaoHandle;
gIGenVertexArrays(1, &vaoHandle);
glBindVertexArray(vaoHandle);
```

// Generate and bind vertex buffers - VBO-s
// set data for position, color etc
glBindVertexArray(0);

Vertex Buffer Object (VBO)

- Buffer for hold one vertex data array

```
GLuint vaoHandle;
glGenVertexArrays(1, &vaoHandle);
glBindVertexArray(vaoHandle);
```

GLuint vboHandle;
gIGenBuffers(1, \&vboHandle);
glBindBuffer(GL_ARRAY_BUFFER, vboHandle);
glBufferData(GL_ARRAY_BUFFER,
sizeof(GLfloat) * vertexCount, vertexDataArray, GL_STATIC_DRAW);

Vertex Attribute

- Variable in the shader, which points to the data

```
GLuint vboHandle;
glGenBuffers(1, &vboHandle);
glBindBuffer(GL_ARRAY_BUFFER, vboHandle);
glBufferData(GL_ARRAY_BUFFER,
    sizeof(GLfloat) * vertexCount, vertexDataArray, GL_STATIC_DRAW);
```

GLuint loc = glGetAttribLocation(shaderProgram, name);
glEnableVertexAttribArray(loc);
gIVertexAttribPointer(loc, elementsPerVertex, GL_FLOAT, GL_FALSE, 0, 0);

VBO: Element Array Buffer

- Buffer for indices to map the vertices \rightarrow faces

```
GLuint loc = glGetAttribLocation(shaderProgram, name);
glEnableVertexAttribArray(Ioc);
g|VertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, 0, 0);
gIGenBuffers(1, &vboHandle);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboHandle);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
    sizeof(GLfloat)*indexCount, indices, GL_STATIC_DRAW);
```

glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);

Example

triangleVAO
positionVBO: $[-1,0,0,1,0,0,0,1,0]$
indicesVBO: [0, 1, 2]

Example

squareVAO
positionVBO: $[-1,-1,0,1,-1,0,-1,1,0,1,1,0]$ indicesVBO: [0, 1, 2, 1, 3, 2]

Drawing

- Each frame we tell the GPU to draw

std::stackglm::mat4 ms;
ms.push(glm::mat4(1.0));
ms.push(ms.top());
ms.top() = glm::rotate(ms.top(), ...);
ms.top() = glm::translate(ms.top(), ...);
GLint loc = glGetUniformLocation(prog, matrixName);
glUniformMatrix4fv(loc, 1, GL_FALSE, glm::value_ptr(ms.top()));
glBindVertexArray(vaoHandle);
gIDrawElements(GL_TRIANGLES, vertexCount, GL_UNSIGNED_BYTE, 0); ms.pop();

The Scene

- Useful to think of the scene as a tree

Use of the Matrix Stack

- More complex geometry for a single object

Old and new OpenGL?

- It used to be different before OpenGL 3.
- Everything old still works in compatibility mode.

Prior to OpenGL 3

- $\operatorname{glBegin}(. .$.
- glVertex(...)
- $\operatorname{glEnd}(. .$.
- glTranslate(...)
- glRotate(...)
- gIScale(...)
- glMaterial(...)

OpenGL 3+

- Vertex Array Object (VAO)
- Vertex Buffer Object (VBO)
- Use other Matrix library (eg GLM)
- Send your matrices to shaders
- Vertex Buffer Object (VBO)

Now You Know

Data

$(1,0,0),(0,1,0),(0,0,1)$, this is a triangle, please draw

Next time...

- The graphics pipeline in more detail
- How to define color for our geometry?
- Vertex and fragment shaders

