

Computer Graphics Seminar

MTAT.03.305

Spring 2018

Raimond Tunnel

Computer Graphics

- Graphical illusion via the computer
- Displaying something meaningful (incl art)

Math

- Computers are good at... computing.
- To do computer graphics, we need math for the computer to compute.
- · Geometry, algebra, calculus.

$$\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + cz + d \\ ex + fy + gz + h \\ ix + jy + kz + l \\ 1 \end{bmatrix}$$

Math

- For actually creating and manipulating objects in 3D we need:
 - Analytic geometry math about coordinate systems
 - Linear algebra math about vectors and spaces

Skills for Computer Graphics

Mathematical understanding

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

Geometrical (spatial) thinking

Programming

GLuint vaoHandle;

glGenVertexArrays(1, &vaoHandle);

glBindVertexArray(vaoHandle)

Visual creativity & aesthetics

Point

(x, y, z, 1)

- Simplest geometry primitive
- In homogeneous coordinates:

$$(x, y, z, w), w \neq 0$$

- Represents a point (x/w, y/w, z/w)
- Usually you can put w = 1 for points
- Actual division will be done by GPU later

Line (segment)

- Consists of:
 - 2 endpoints
 - Infinite number of points between
- Defined by the endpoints

Interpolated and rasterized in the GPU

Line (segment)

- Consists of:
 - 2 endpoints
 - Infinite number of points between
- Defined by the endpoints

Interpolated and rasterized in the GPU

Line (segment)

- Consists of:
 - 2 endpoints
 - Infinite number of points between
- Defined by the endpoints

Interpolated and rasterized in the GPU

Triangle

- Consists of:
 - 3 points called vertices
 - 3 lines called edges
 - 1 face
- Defined by 3 vertices

- Face interpolated and rasterized in the GPU
- Counter-clockwise order defines front face

Why triangles?

- They are in many ways the simplest polygons
 - 3 different points always form a plane
 - Easy to rasterize (fill the face with pixels)
 - Every other polygon can be converted to triangles

Why triangles?

- They are in many ways the simplest polygons
 - 3 different points always form a plane
 - Easy to rasterize (fill the face with pixels)
 - Every other polygon can be converted to triangles
- OpenGL used to support other polygons too
 - Must have been:
 - Simple No edges intersect each other
 - Convex All points between any two points are inner points

Examples of polygons

OpenGL < 3.1 primitives

Figure 2-7 Geometric Primitive Types

V₀ V₂ V₄ V₆ V₇ V₇ GL_QUAD_STRIP

OpenGL Programming Guide 7th edition, p49

After OpenGL 3.1

Table 3.1 OpenGL Primitive Mode Tokens

Primitive Type	OpenGL Token
Points	GL_POINTS
Lines	GL_LINES
Line Strips	GL_LINE_STRIP
Line Loops	GL_LINE_LOOP
Independent Triangles	GL_TRIANGLES
Triangle Strips	GL_TRIANGLE_STRIP
Triangle Fans	GL_TRIANGLE_FAN

Figure 3.2 Vertex layout for a triangle fan

Figure 3.1 Vertex layout for a triangle strip

OpenGL Programming Guide 8th edition, p89-90

In the beginning there were points

We can now define our geometric objects!

In the beginning there were points

- We can now define our geometric objects!
- We want to move our objects!

This too..

- Homogeneous coordinates allow easy:
 - Linear transformations
 - Scaling, reflection
 - Rotation
 - Shearing
 - Affine transformations
 - Translation (moving / shifting)
 - Projection transformations
 - Perspective
 - Orthographic

- Every transformation is a function
- As you remember from Algebra, linear functions can be represented as matrices

$$f(v) = \begin{pmatrix} 2 \cdot x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
Linear function, which increases the first as a matrix

coordinate two times.

$$v \in R^3$$

$$v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Column-major format

 GPU-s are built for doing transformations with matrices on points (vertices).

 GPU-s are built for doing transformations with matrices on points (vertices).

Linear transformations satisfy:

$$f(a_1x_1 + ... + a_nx_n) = a_1f(x_1) + ... + a_nf(x_n)$$

We don't use homogeneous coordinates at the moment, but they will be back...

Linear Transformation

Scale

Scaling

Multiplies the coordinates by a scalar factor.

Scaling

- Multiplies the coordinates by a scalar factor.
- Scales the standard basis vectors / axes.

Scaling

In general we could scale each axis

$$\begin{bmatrix} a_x & 0 & 0 \\ 0 & a_y & 0 \\ 0 & 0 & a_z \end{bmatrix} \qquad \begin{array}{l} a_x - \text{x-axis scale factor} \\ a_y - \text{y-axis scale factor} \\ a_z - \text{z-axis scale factor} \\ \end{array}$$

• If some factor is negative, this matrix will reflect the points from that axis. Thus we get reflection.

Linear Transformation

Shear

Shearing

- Not much used by itself, but remember it for translations later.
- Tilts only one axis.
- Squares become parallelograms.

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

Shearing

• **Shear-y**, we tilt parallel to y axis by angle φ counter-clockwise

$$\begin{pmatrix} 1 & 0 \\ \tan(\varphi) & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y + \tan(\varphi) \cdot x \end{pmatrix}$$

 Shear-x, we tilt parallel to x axis by angle φ clockwise

$$\begin{pmatrix} 1 & \tan(\varphi) \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + \tan(\varphi) \cdot y \\ y \end{pmatrix}$$

Linear Transformation

Rotation

- Shearing moved only one axis
- Also changed the size of the basis vector
- Can we do better?

Did you notice that the columns of the transformation matrix show the coordinates of the new basis vectors?

$$e'_0 = (|a|, |b|) = (\cos(\alpha), \sin(\alpha))$$

 $e'_1 = (|a'|, |b'|) = (-\sin(\alpha), \cos(\alpha))$

$$\cos(\alpha) = \frac{|a|}{|e'_0|} = \frac{|a|}{1} = |a|$$

 So if we rotate by α in counter-clockwise order in 2D, the transformation matrix is:

$$\begin{pmatrix}
e'_0 \\
\cos(\alpha) \\
\sin(\alpha)
\end{pmatrix}$$

$$\begin{pmatrix}
\cos(\alpha) \\
\cos(\alpha)
\end{pmatrix}$$

In 3D we can do rotations in each plane (xy, xz, yz), so there can be 3 different matrices.

- To do a rotation around an arbitrary axis, we can:
 - Rotate that axis to be the x-axis
- OpenGL provides a command for rotating around a given axis.
- Often quaternions are used for rotations.

Quaternions are elements of a number system that extend the complex numbers...

Do we have everything now?

We can scale, share and rotate our geometry

around the origin...

What if we have an object not centered in the origin?

Affine Transformation

Translation

Translation

 Imagine that our 1D world is located at y=1 line in 2D space.

Notice that all the points are in the form: (x, 1)

Translation

 What happens if we do shear-x(45°) operation on the 2D world?

 Everything in our world has moved magically one x-coordinate to the right...

$$tan(45^{\circ}) = 1$$

Translation

• What if we do shear-x(63.4°)?

 $\tan(63.4^{\circ}) = 2$

- Everything has now moved 2 x-coordinates to the right from the original position
- We can do translation (movement)!

Translation

 When we represent our points in one dimension higher space, where the extra coordinate is 1, we get to the **homogeneous** space.

$$\begin{pmatrix}
1 & x_t \\
0 & 1
\end{pmatrix} \cdot \begin{pmatrix} x \\
1
\end{pmatrix} = \begin{pmatrix} x + x_t \\
1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & x_t \\
0 & 1 & 0 & y_t \\
0 & 0 & 1 & z_t \\
0 & 0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix} x \\
y \\
z \\
1
\end{pmatrix} = \begin{pmatrix} x + x_t \\
y + y_t \\
z + z_t \\
1
\end{pmatrix}$$

$$\begin{vmatrix} 1 & 0 & 0 & x_t \\ 0 & 1 & 0 & y_t \\ 0 & 0 & 1 & z_t \\ 0 & 0 & 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{vmatrix} x + x_t \\ y + y_t \\ z + z_t \\ 1 \end{vmatrix}$$

Transformations

 This together gives us a very good toolset to transform our geometry as we wish.

- Everything starts from the origin!
- To apply multiple transformations, just multiply matrices.

Our initial geometry defined by vertices: (-1, -1), (1, -1), (1, 1), (-1, 1)

$$\begin{pmatrix}
1 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

 We can combine the transformations to a single matrix.

$$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(45^\circ) & -\sin(45^\circ) & 0 \\ \sin(45^\circ) & \cos(45^\circ) & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(45^\circ) & -\sin(45^\circ) & 4 \\ \sin(45^\circ) & \cos(45^\circ) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- This works for combining different affine transformations, but the result is hard to read...
- Order of transformations / matrices is important!
- http://cgdemos.tume-maailm.pri.ee

This in Practice?

OpenGL

- GPU API / middleware
- Set of commands that a program can give to GPU
- Supported in many languages

WebGL

- GPU API in JavaScript
- Supported by major browsers
- THREE.js Higher level library to ease your coding: http://threejs.org/docs/

OpenGL and WebGL

The Setup

Sending vertex data to the GPU

Vertex Array Object (VAO)

An object to contain data arrays for vertices

```
GLuint vaoHandle;
glGenVertexArrays(1, &vaoHandle);
glBindVertexArray(vaoHandle);

// Generate and bind vertex buffers - VBO-s
// set data for position, color etc

glBindVertexArray(0);
```

Vertex Buffer Object (VBO)

Buffer for hold one vertex data array

. . .

Vertex Attribute

Variable in the shader, which points to the data

```
GLuint vboHandle;
glGenBuffers(1, &vboHandle);
glBindBuffer(GL_ARRAY_BUFFER, vboHandle);
glBufferData(GL_ARRAY_BUFFER,
      sizeof(GLfloat) * vertexCount, vertexDataArray, GL_STATIC_DRAW);
GLuint loc = glGetAttribLocation(shaderProgram, name);
glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc, elementsPerVertex, GL_FLOAT, GL_FALSE, 0, 0);
```

. . .

VBO: Element Array Buffer

Buffer for indices to map the vertices → faces

```
GLuint loc = glGetAttribLocation(shaderProgram, name);
glEnableVertexAttribArray(loc);
glVertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, 0, 0);
glGenBuffers(1, &vboHandle);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboHandle);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
             sizeof(GLfloat)*indexCount, indices, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
```

Example

triangleVAO

positionVBO: [-1, 0, 0, 1, 0, 0, 0, 1, 0]

indicesVBO: [0, 1, 2]

Example

squareVAO

```
positionVBO: [-1, -1, 0, 1, -1, 0, -1, 1, 0, 1, 1, 0]
```

indicesVBO: [0, 1, 2, 1, 3, 2]

Drawing

Each frame we tell the GPU to draw

```
std::stack<glm::mat4> ms;
ms.push(glm::mat4(1.0));
ms.push(ms.top());
     ms.top() = glm::rotate(ms.top(), ...);
     ms.top() = glm::translate(ms.top(), ...);
     GLint loc = glGetUniformLocation(prog, matrixName);
     glUniformMatrix4fv(loc, 1, GL_FALSE, glm::value_ptr(ms.top()));
     glBindVertexArray(vaoHandle);
     glDrawElements(GL_TRIANGLES, vertexCount, GL_UNSIGNED_BYTE, 0);
ms.pop();
```

The Scene

Useful to think of the scene as a tree

Use of the Matrix Stack

More complex geometry for a single object

Old and new OpenGL?

- It used to be different before OpenGL 3.
- Everything old still works in compatibility mode.

Prior to OpenGL 3

• glBegin(...)

• Vertex Array Object (VAO)

• glEnd(...)

• Vertex Buffer Object (VBO)

- glTranslate(...)
- glRotate(...)
- glScale(...)

- Use other Matrix library (eg GLM)
- Send your matrices to shaders

• glMaterial(...)

• Vertex Buffer Object (VBO)

Now You Know

Next time...

- The graphics pipeline in more detail
- How to define color for our geometry?
- Vertex and fragment shaders

