

Computer Graphics Seminar
MTAT.03.305

Spring 2018

Raimond Tunnel

Previously...

● We define our geometry (points, lines, triangles)
● We apply transformations (matrices)

(cos(45°) −sin (45°)
sin(45°) cos(45°)) =

When is this true?

Now we add color?

What exactly is here?

This isn't quite true...

Adding color... ?

Material properties

● We want GPU to take into account a color
property when rendering some geometry.

What is depicted here?

http://cgdemos.tume-maailm.pri.ee/

http://cgdemos.tume-maailm.pri.ee/

Material properties

● We want GPU to take into account a color
property when rendering some geometry.

Red cube?

Two red trapezoids?

Flat red polygon?

http://cgdemos.tume-maailm.pri.ee/

http://cgdemos.tume-maailm.pri.ee/

What is color?

What is color?

● Spectrum of the light reflected off a surface.

What is color?

● Spectrum of the light reflected off a surface.
● In 3D it is not enough to just say that a thing is red.

What is color?

● Spectrum of the light reflected off a surface.
● In 3D it is not enough to just say that a thing is red.
● We need to say that somewhere we have a some

kind of light source.

Directional light

● Ok, we define a light direction

Directional light

● Ok, we define a light direction
● A surface

Directional light

● Ok, we define a light direction
● A surface
● Viewer

Directional light

● Ok, we define a light direction
● A surface
● Viewer

Viewer does not see
surface point at 4?

Directional light
● Reality – our surfaces are diffusely reflective!

Diffuse Reflection
● Light entering at a specific angle

Diffuse Reflection
● Photon excites an atom

Diffuse Reflection
● The energy is transferred to the next atom

Diffuse Reflection
● The energy is transferred to the next atom
● Some energy is absorbed

Diffuse Reflection
● Excited atoms vibrate, giving off heat

Diffuse Reflection
● Finally photon exits the surface

Diffuse Reflection
● In a quite random direction

Diffuse Reflection
● This is generally how pigments work

Nice post: https://physics.stackexchange.com/a/240848

https://en.wikipedia.org/wiki/Pigment
https://physics.stackexchange.com/a/240848

Diffuse Reflection
● Can be caused by other reasons too!

Diffuse Reflection
● Can be caused by other reasons too!
● For example structural coloration in nature.

https://en.wikipedia.org/wiki/Pollia_condensata All of these feathers are actually brown.

https://en.wikipedia.org/wiki/Structural_coloration
https://en.wikipedia.org/wiki/Pollia_condensata

Diffuse Reflection
● Can be caused by other reasons too!
● For example structural coloration in nature.

https://en.wikipedia.org/wiki/Structural_coloration

Diffuse Reflection

● Let's assume diffuse light scatters uniformly

Diffuse Reflection

● So all we need now is the angle between the
surface normal and the light's direction.

● Why this angle?

By the way, the scattered light
intensities may not be equal in all
directions...
See glossy reflection.

More correct is direction towards the light

Diffuse Reflection

Hint?

Diffuse Reflection

1
cos(80.81°)

≈6.261
cos(45°)

≈1.42

● The actual light energy per surface unit
depends on the angle.

Diffuse Reflection & Directional Light

● Given a surface point and a light source, we
can calculate the color of that surface point.

● We use a cosine between the surface normal
and a vector going towards the light source.

● To find the cosine of the angle, we can use a
scalar / dot product operation.

v⋅u=∣∣v∣∣⋅∣∣u∣∣⋅cos(angle (u , v))

v⋅u=v1⋅u1+ v2⋅u2+ v3⋅u3

Geometric definition

Algebraic definition

Diffuse Reflection & Directional Light

● To find the cosine of the angle, we can use a
scalar / dot product operation.

v⋅u=∣∣v∣∣⋅∣∣u∣∣⋅cos(angle (u , v))

v⋅u=v1⋅u1+ v2⋅u2+ v3⋅u3

Geometric definition

Algebraic definition

● Because we have normalized (unit) vectors,
geometric definition simplifies to:

v⋅u=∣∣v∣∣⋅∣∣u∣∣⋅cos(α)=1⋅1⋅cos(α)=cos(α)

Diffuse Reflection & Directional Light

Diffuse surface and directional light

● So if we put those two definitions together:

v⋅u=v1⋅u1+ v2⋅u2+ v3⋅u3=cos(α)

This should be quite easy for the computer to calculate...

Diffuse surface and directional light

● The dot product and the cosine between
two vectors are used quite often in CG.

Diffuse surface and directional light

● Dot product of two vectors u and v is the same
as vector multiplication.

v⋅u=v1⋅u1+ v2⋅u2+ v3⋅u3=(v1 v2 v3)⋅(
u1

u2

u3
)=vT u

● So for our surface point we get:

Intensity=directionTowardsLightT
⋅surfaceNormal

I=lT
⋅n

What is the visual result of that?I ∈[0,1]

Diffuse surface and directional light

● Two things were missing:
● Intensity of the light source
● Reflectivity of our material

L

M

Diffuse surface and directional light

● Also the color!
● We apply to each of 3 RGB channels.

I R=nT
⋅l⋅LR⋅M R

I G=nT
⋅l⋅LG⋅M G

I B=nT
⋅l⋅LB⋅M B

Light that material reflects

Light that light source emits

Diffuse surface and directional light

What color are the apples if

red light shines upon them?

What is wrong with this

example?(2+ things)

Point light

● Point lights work the same way, but the light
source is a point.

Point light

● Sometimes distance attenuation parameters
are added.

Far away

Close

Point light

● Sometimes distance attenuation parameters
are added.

● In OpenGL:

● In Three.js:

attenuation=
1

k c+k l⋅d +k q⋅d 2

Usually 1(why?)

This is
physically

correct

http://threejs.org/docs/#Reference/Lights/PointLight

PointLight(hex, intensity, distance)

Distance - If non-zero, light will attenuate linearly from
maximum intensity at light position down to zero at distance.

http://threejs.org/docs/#Reference/Lights/PointLight

Ambient light

● So, now we have 2 lights and a diffuse surface.
● Are we OK?

Ambient light

● World contains much more than 1 cube and a
light source.

● Do you know what scene this is?

● Calculating every
reflection from every
other object is time-
consuming.

● What can we do?

Ambient light

● Ambient light source – estimates the light
reflected off of other objects in the scene

Ambient light

● Ambient light source – estimates the light
reflected off of other objects in the scene

● Ambient material property – how much object
reflects that light (usually same as diffuse)

Ambient light

● Ambient light source – estimates the light
reflected off of other objects in the scene

● Ambient material property – how much object
reflects that light (usually same as diffuse)

Lambert material

● So together with diffuse lighting we get:

I R=LAR
⋅M AR

+ nT⋅l⋅LDR
⋅M DR

I G=LAG
⋅M AG

+ nT⋅l⋅LDG
⋅M DG

I B=LAB
⋅M AB

+ nT⋅l⋅LDB
⋅M DB

Red channel

Green channel

Blue channel

Ambient term Diffuse term What could go wrong?

Is this it?

● Well, we have already made a very rough
approximation of reality with the ambient term.

● Is there anything else that we have forgotten?

Specular Reflection

● Materials also reflect light specularly.

Specular Reflection

● Materials also reflect light specularly.
● Especially varnished materials and metals!

Specular Reflection

● Materials also reflect light specularly.
● Especially varnished materials and metals!
● Specular reflection is the direct reflection of

the light from the environment.

Specular Reflection

● Materials also reflect light specularly.
● Especially varnished materials and metals!
● Specular reflection is the direct reflection of

the light from the environment.
● Often we want just a specular highlight –

– that is the reflection of the light source!

Specular highlight

● Depends on the viewer's position.

Specular highlight

● At point 4, which viewer direction should
produce more specular highlight?

Specular highlight

● How to calculate that based on β?

Specular highlights

● Ok, so add a specular term based on the actual
reflection direction (r) and viewer direction (v).

I R=LAR
⋅M AR

+ nT⋅l⋅LDR
⋅M DR

+ rT⋅v⋅LS R
⋅M S R

I G=LAG
⋅M AG

+ nT⋅l⋅LDG
⋅M DG

+ rT⋅v⋅LS G
⋅M S G

I B=LAB
⋅M AB

+ nT⋅l⋅LDB
⋅M DB

+ vT⋅r⋅LS B
⋅M S B

Is there something missing?
Some properties are usually the same in the same channel.

Any errors on the slide?

Specular highlights

● Calculating specular highlight for different
angles:

M
S

L
S

α ~cos(α) ~I

0.25 1 10° 0.98 0,25

0.25 1 20° 0.94 0,24

0.25 1 30° 0.87 0,22

0.25 1 40° 0.77 0,19

0.25 1 50° 0.64 0,16

0.25 1 60° 0.5 0,12

0.25 1 70° 0.34 0,09

0.25 1 80° 0.17 0,04

0.25 1 90° 0 0

Assume we are dealing with one channel (e.g. red)

Assume the channel values are between [0, 1] (mapped later to [0, 255])

This is actually too little change
in the result for such a big
change from 10° to 20°.

This is too much for
such big angles.

Specular highlights

● How to increase the contrast? Use a power.

α ~cos2(α) ~I ~cos3(α) ~I ~cos4(α) ~I ~cos5(α) ~I

10° 0.97 0,24 0.96 0.24 0.94 0.23 0.92 0.23

20° 0.88 0,22 0.83 0.21 0.78 0.20 0.73 0.18

30° 0.75 0.19 0.65 0.16 0.56 0.14 0.49 0.12

40° 0.59 0.15 0.45 0.11 0.34 0.09 0.26 0.07

50° 0.41 0.10 0.27 0.07 0.17 0.04 0.11 0.03

60° 0.25 0.06 0.13 0.03 0.06 0.02 0.03 0.01

70° 0.12 0.04 0.04 0.01 0.01 0.00 0.00 0.00

80° 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00

90° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Values above 0.25

Specular highlights

● Specify some shininess value c for the material

I R=LAR
⋅M AR

+nT⋅l⋅LDR
⋅M DR

+(rT⋅v)c⋅LS R
⋅M S R

I G=LAG
⋅M AG

+nT⋅l⋅LDG
⋅M DG

+(rT⋅v)c⋅LSG
⋅M S G

I B=LAB
⋅M AB

+nT⋅l⋅LDB
⋅M DB

+(rT⋅v)c⋅LS B
⋅M S B

Specular highlights

c=0

c=30

c=90

c=300

Phong's Lighting Model

I R=LAR
⋅M AR

+nT⋅l⋅LDR
⋅M DR

+(rT⋅v)c⋅LS R
⋅M S R

I G=LAG
⋅M AG

+nT⋅l⋅LDG
⋅M DG

+(rT⋅v)c⋅LSG
⋅M S G

I B=LAB
⋅M AB

+nT⋅l⋅LDB
⋅M DB

+(rT⋅v)c⋅LS B
⋅M S B

Ambient light approximation.

Phong's Lighting Model

I R=LAR
⋅M AR

+nT⋅l⋅LDR
⋅M DR

+(rT⋅v)c⋅LS R
⋅M S R

I G=LAG
⋅M AG

+nT⋅l⋅LDG
⋅M DG

+(rT⋅v)c⋅LSG
⋅M S G

I B=LAB
⋅M AB

+nT⋅l⋅LDB
⋅M DB

+(rT⋅v)c⋅LS B
⋅M S B

Lambertian / diffuse reflectance

Phong's Lighting Model

I R=LAR
⋅M AR

+nT⋅l⋅LDR
⋅M DR

+(rT⋅v)c⋅LS R
⋅M S R

I G=LAG
⋅M AG

+nT⋅l⋅LDG
⋅M DG

+(rT⋅v)c⋅LSG
⋅M S G

I B=LAB
⋅M AB

+nT⋅l⋅LDB
⋅M DB

+(rT⋅v)c⋅LS B
⋅M S B

Phong's specular reflectance term

Phong's Lighting Model

I R=LAR
⋅M AR

+ nT⋅l⋅LDR
⋅M DR

+ (rT⋅v)c⋅LS R
⋅M S R

I G=LAG
⋅M AG

+ nT⋅l⋅LDG
⋅M DG

+ (rT⋅v)c⋅LS G
⋅M SG

I B=LAB
⋅M AB

+ nT⋅l⋅LDB
⋅M DB

+ (rT⋅v)c⋅LS B
⋅M S B

Something still missing?

Blinn-Phong model
● Sometimes Phong's specular term is replaced

with Blinn-Phong's specular term.

Blinn-Phong model
● Sometimes Phong's specular term is replaced

with Blinn-Phong's specular term.
● Instead of viewer direction and reflected light's

direction, we use the surface normal and a
half angle vector between the light source and
the viewer.

Blinn-Phong model

● There are some differences
● These are not the only two possibilities

DEMO 2: http://cgdemos.tume-maailm.pri.ee/

THREE.JS videos: https://www.udacity.com/course/viewer#!/c-cs291/l-124106593/m-157996647

https://en.wikipedia.org/wiki/List_of_common_shading_algorithms
http://cgdemos.tume-maailm.pri.ee/
https://www.udacity.com/course/viewer#!/c-cs291/l-124106593/m-157996647

The Standard Graphics Pipeline

Vertex
transformations

Culling & Clipping

Rasterization

Fragment shading

Visibility tests &
Blending

Vertex shader,

Perspective division, Viewport transformation

Culling – remember the face directions?

Clipping – some parts are out of view

vs

P⋅V⋅M⋅v

Vertex shader

Fragment shader

Data

Vertex Shader (1)
● Executed in parallel for each vertex
● Purpose is to transform the coordinates

At least OpenGL 4.0

Vertex Shader (1)

Uniforms are variables, which have
the same values for all vertices

● Executed in parallel for each vertex
● Purpose is to transform the coordinates

Vertex Shader (1)
● Executed in parallel for each vertex
● Purpose is to transform the coordinates

Primary input value is the vector
with positional coordinates
(different for each vertex)

Vertex Shader (1)
● Executed in parallel for each vertex
● Purpose is to transform the coordinates

Matrix-vector multiplication transforms the position from model's
local space to clip space (and automatically later on to screen space)

Vertex Shader (2)

● Output variables will be interpolated to fragments

Each vertex can have more
different data assigned to it.

...

Vertex Shader (2)

● Output variables will be interpolated to fragments

We can specify output variables,
which we will need to assign and
will be interpolated

...

Vertex Shader (2)

● We want to work in one specific space
(usually it is the camera's space)

Normals need to be transformed
a bit differently...

This code is pretty non-optimal... Makes a lot of unnecessary calculations...

...

Vertex Shader (2)

● We want to work in one specific space
(usually it is the camera's space)

We calculate and assign the values for our output variables.

This code is pretty non-optimal... Makes a lot of unnecessary calculations...

...

Fragment Shader (1)

● Executed in parallel for each fragment
● Purpose is to calculate the color value

Fragment Shader (1)

● Executed in parallel for each fragment
● Purpose is to calculate the color value

Fragment shader's output
variable will be the color

Fragment Shader (1)

● Executed in parallel for each fragment
● Purpose is to calculate the color value

Everything rendered with this shader will be uniformly red

Fragment Shader (2)

● Uniforms can also be accessed here

Marginally better then the
previous example

Fragment Shader (3)

All p
ositio

ns and vectors n
eed to be in

the same space for th
e math to work

Fragment Shader (3)

What lighting model is this?

GLSL in WebGL

● WebGL is based on OpenGL 2.0
● Everything is pretty much the same, but instead

of in and out you write varying variables.

Common values are prepended to this by Three.js

GLSL in WebGL

In reality you'll do similar calculations here as before

Conclusion

● Computer graphics can be used to create a
illusion of reality

Reality
Mathematical

description
Replication

Approximation Approximation

Computer

● First approximation is of the shape – geometry
● GPU wants those triangles
● Vertices and transformation

matrices

Conclusion
● Many ways to approximate lighting (Lambert,

Phong, Blinn), reflections, refractions, shadows...
● Ambient, diffuse, specular terms

I=LA⋅M A+ nT⋅l⋅LD⋅M D+ (rT⋅v)c⋅LS⋅M S

Direction towards light, surface normal, reflection direction, direction towards viewer

Thanks for listening!

	Slaid 1
	Slaid 2
	Slaid 3
	Slaid 4
	Slaid 5
	Slaid 6
	Slaid 7
	Slaid 8
	Slaid 9
	Slaid 10
	Slaid 11
	Slaid 12
	Slaid 13
	Slaid 14
	Slaid 15
	Slaid 16
	Slaid 17
	Slaid 18
	Slaid 19
	Slaid 20
	Slaid 21
	Slaid 22
	Slaid 23
	Slaid 24
	Slaid 25
	Slaid 26
	Slaid 27
	Slaid 28
	Slaid 29
	Slaid 30
	Slaid 31
	Slaid 32
	Slaid 33
	Slaid 34
	Slaid 35
	Slaid 36
	Slaid 37
	Slaid 38
	Slaid 39
	Slaid 40
	Slaid 41
	Slaid 42
	Slaid 43
	Slaid 44
	Slaid 45
	Slaid 46
	Slaid 47
	Slaid 48
	Slaid 49
	Slaid 50
	Slaid 51
	Slaid 52
	Slaid 53
	Slaid 54
	Slaid 55
	Slaid 56
	Slaid 57
	Slaid 58
	Slaid 59
	Slaid 60
	Slaid 61
	Slaid 62
	Slaid 63
	Slaid 64
	Slaid 65
	Slaid 66
	Slaid 67
	Slaid 68
	Slaid 69
	Slaid 70
	Slaid 71
	Slaid 72
	Slaid 73
	Slaid 74
	Slaid 75
	Slaid 76
	Slaid 77
	Slaid 78
	Slaid 79
	Slaid 80
	Slaid 81
	Slaid 82
	Slaid 83
	Slaid 84
	Slaid 85
	Slaid 86
	Slaid 87

