
Rendering a Large 
Amount of Units



Contents

● Overdraw
● Culling
● Draw calls
● Batching

○ Dynamic
○ Static

● Geometry Instancing



Rendering a large amount of units…?



Overdraw I - Definition

A pixel on the screen is being redrawn in a single frame.
When 3D rendering:
● A pixel is replaced by a closer one.
● Distance is determined by Z coordinates towards the 

camera.

What are the problems?
● Rendering “empty” pixels/polygons == Wasting time.
● Redrawing non-transparent pixels.



Overdraw II - Minimizing (3D)

●

●

○



Overdraw III - Example (3D)



Overdraw IV - Example (2D)

●
● …



“Culling”

Selects objects for rendering operations 
● in a defined region of interest.
Makes rendering quicker and more efficient.

What I mean:
● Frustum culling
● Back-face culling
● Occlusion culling



Frustum culling

View frustum - volume in space
from a given viewpoint.

Only objects in view frustum are 
sent for rendering.
● “Potentially visible” objects.



Back-face culling

● Determines if a polygon is visible.
● Reduces the number of polygons to be drawn.



Occlusion Culling
Also 
● Hidden surface determination
● hidden surface removal (HSR)
● visible surface determination (VSD)

Determines surfaces and parts of surfaces 
that are not visible from a certain viewpoint.



Culling illustrations



Draw calls I - Definition

●

●
○



Draw calls II - Minimizing

●
●

●
○
○



Draw calls III - Large objects

Large images with small amount of transparency.

● Separate areas with transparency.
○ Define subimages as alpha or no alpha.

● If possible, use
○ smaller mipmap levels of images.
○ meshes with smaller level of detail.



Draw calls III+ - Image separation example 



Batching

● Multiple meshes are merged together.

● Reduces communication between CPU and GPU.

● Improves performance.



Dynamic batching

● Automatic*, used each frame.
● Reduces draw calls for objects that

○ share the same material.
○ can be moved.

Useful when transforming vertices is cheaper than doing 
these same draw calls.



Static batching

● Reduces draw calls for geometry that
○ shares the same material.
○ does not move. 

● Usually more efficient than dynamic batching.
○ Pre-calculated

● Downside: Uses more memory.
● Bad examples: Trees in a dense forest.



Geometry Instancing

● Copies of mesh in different locations. 
● Needs to know the position of each object.

● Especially useful for thousands of meshes.
● Used for repeated geometry, like

○ trees, grass, buildings,
○ Or characters.





Tips for better performance

● Simplify meshes.
● Use reasonable level of detail.

● Try vertex coloring.
● Try gradient mapping.
● Avoid dynamic lighting.



Thank you for listening!



See also
Overdraw in frontend development: 
https://www.youtube.com/watch?v=T52v50r-JfE 

Reducing polygon count: 
https://blender.stackexchange.com/questions/78499/how-to-decrease-the- polygon-count-on-my-mesh 

Optimizing graphics performance: 
https://docs.unity3d.com/Manual/OptimizingGraphicsPerformance.html 

https://www.youtube.com/watch?v=T52v50r-JfE
https://blender.stackexchange.com/questions/78499/how-to-decrease-the-polygon-count-on-my-mesh
https://docs.unity3d.com/Manual/OptimizingGraphicsPerformance.html


References
https://en.wiktionary.org/wiki/overdraw
http://polycount.com/discussion/162570/mobile-graphics-optimization
http://polycount.com/discussion/89154/overdraw-how-does-it-work-and-how-bad-is-it
https://developer.android.com/topic/performance/rendering/overdraw
https://stackoverflow.com/questions/2856448/how-to-prevent-overdrawing
https://en.wiktionary.org/wiki/mipmap 
https://forum.unity.com/threads/what-are-draw-calls.27416/ 
https://docs.unity3d.com/Manual/DrawCallBatching.html 
https://www.gamedev.net/articles/programming/graphics/opengl-batch-rendering-r3900/ 
https://unity3d.com/learn/tutorials/temas/performance-optimization/optimizing-graphics-rendering-unity-ga
mes
https://www.khronos.org/opengl/wiki/Vertex_Rendering#Instancing 
https://en.wikipedia.org/wiki/Viewing_frustum 
http://slideplayer.com/slide/5268774/ 
https://en.wikipedia.org/wiki/Hidden_surface_determination 
https://en.wikipedia.org/wiki/Back-face_culling 

https://en.wiktionary.org/wiki/overdraw
http://polycount.com/discussion/162570/mobile-graphics-optimization
http://polycount.com/discussion/89154/overdraw-how-does-it-work-and-how-bad-is-it
https://developer.android.com/topic/performance/rendering/overdraw
https://stackoverflow.com/questions/2856448/how-to-prevent-overdrawing
https://en.wiktionary.org/wiki/mipmap
https://forum.unity.com/threads/what-are-draw-calls.27416/
https://docs.unity3d.com/Manual/DrawCallBatching.html
https://www.gamedev.net/articles/programming/graphics/opengl-batch-rendering-r3900/
https://unity3d.com/learn/tutorials/temas/performance-optimization/optimizing-graphics-rendering-unity-games
https://unity3d.com/learn/tutorials/temas/performance-optimization/optimizing-graphics-rendering-unity-games
https://www.khronos.org/opengl/wiki/Vertex_Rendering#Instancing
https://en.wikipedia.org/wiki/Viewing_frustum
http://slideplayer.com/slide/5268774/
https://en.wikipedia.org/wiki/Hidden_surface_determination
https://en.wikipedia.org/wiki/Back-face_culling


Images borrowed from...
https://www.youtube.com/watch?v=lqWqRc7J0BU 
http://polycount.com/discussion/162570/mobile-graphics-optimization 
https://opengameart.org/content/lpc-tile-atlas 
https://www.youtube.com/watch?v=c-UskAGQaBQ 
https://en.wikipedia.org/wiki/Viewing_frustum 
http://slideplayer.com/slide/5268774/ 
https://en.wikipedia.org/wiki/Back-face_culling 

https://www.youtube.com/watch?v=lqWqRc7J0BU
http://polycount.com/discussion/162570/mobile-graphics-optimization
https://opengameart.org/content/lpc-tile-atlas
https://www.youtube.com/watch?v=c-UskAGQaBQ
https://en.wikipedia.org/wiki/Viewing_frustum
http://slideplayer.com/slide/5268774/
https://en.wikipedia.org/wiki/Back-face_culling

