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Motivation

• Just colored and shaded surfaces are not realistic



• How to turn



• One option: use a huge number of polygons with appropriate surface 
coloring and reflectance characteristics
• Mona Lisa with 50 semi-transparent Polygons



• We can improve the appearance of polygons by mapping images onto 
their surface



Goals with Texturing

• adding per-pixel surface details without raising the geometric 
complexity of a scene

• keep the number of vertices and primitives low

• add detail per fragment

• detail refers to any property that influences the final radiance, e.g. 
object or light properties

• modeling and rendering time is saved by keeping the geometrical 
complexity low



Types of Mapping

• Texture Mapping 
• Uses images to fill inside of polygons

• Environment (reflection mapping) 
• Uses a picture of the environment for texture maps 

• Allows simulation of highly specular surfaces 

• Bump mapping
• Emulates altering normal vectors during the rendering process

• And more



Texture Mapping 

• Instead of calculating color, shade, light, etc. for each pixel we just 
paste images to our objects in order to create the illusion of realism
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Texture mapping

• Adding lots of detail to our models to realistically depict skin, grass, 
bark, stone, etc., would increase rendering times dramatically, even 
for hardware-supported projective methods.
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Concept

• 2D textures are represented as 2D images

• textures can store a variety of properties, i.e. colors, normals

• positions of texture pixels, i. e. texels, are characterized by texture
coordinates (u, v) in texture space

• texture mapping is a transformation from object space to texture space (x, 
y, z) -> (u, v) 
• texture coordinates (u, v) are assigned to a vertex (x, y, z) 

• texture mapping is generally applied per fragment 
• rasterization determines fragment positions and interpolates texture coordinates

from adjacent vertices
• texture lookup is performed per fragment using interpolated texture coordinates



Coordinate Systems

• Parametric coordinates 
• May be used to model curves and surfaces 

• Texture coordinates 
• Used to identify points in the image to be mapped

• Object or World Coordinates
• Conceptually, where the mapping takes place 

• Window Coordinates 
• Where the final image is really produced





Mapping Functions

• Basic problem is how to find the maps

• Consider mapping from texture coordinates to a point a surface

• Appear to need three functions 
• x = x(s,t) 

• y = y(s,t) 

• z = z(s,t) 

• But we really want to go the other way



Backward Mapping

• We really want to go backwards
• Given a pixel, we want to know to which point on an object it corresponds 

• Given a point on an object, we want to know to which point in the texture it 
corresponds 

• Need a map of the form 
• s = s(x,y,z) 

• t = t(x,y,z)



Non-parametric texture mapping

• With “non-parametric texture mapping”
• Texture size and orientation are fixed

• They are unrelated to size and orientation of polygon



Parametric texture mapping

• With “parametric texture mapping,” texture size and orientation are 
tied to the polygon. 

• Idea
• Separate “texture space” and “screen space” 

• Texture the polygon as before, but in texture space 

• Deform (render) the textured polygon into screen space 

• A texture can modulate just about any parameter – diffuse color, 
specular color, specular exponent, …



Implementing texture mapping

• To apply textures we need 2D coordinates on surfaces
• Parameterization

• A texture lives in it own abstract image coordinates parameterized by 
(u,v) in the range ([0..1], [0..1])

• Some objects have a natural parameterization



Mapping to texture image coordinates

• The texture is usually stored as an image. Thus, we need to convert
• from abstract texture coordinate (u,v) in the range ([0..1], [0..1]) 

• to texture image coordinates (𝑢𝑡𝑒𝑥, 𝑣𝑡𝑒𝑥) in the range ([0..𝑤𝑡𝑒𝑥], [0.. ℎ𝑡𝑒𝑥])



• What happens if object space (pixels) is between texture array
(texels)?

The pixel (i, j) in the 𝑛𝑥 × 𝑛𝑦 image for (u, v) is found by 
𝑖 = 𝑢𝑛𝑥 𝑎𝑛𝑑 𝑖 = 𝑣𝑛𝑦

𝑥 is the floor function that give the highest integer value ≤ x.



Nearest neighbor interpolation

• This is a version of nearest-neighbor interpolation, because we take 
the color of the nearest neighbor



• For smoother effects we may use bilinear interpolation
𝑐 𝑢, 𝑣 =

1 − 𝑢´ 1 − 𝑣´ 𝑐𝑖𝑗 +u´ 1 − 𝑣´ 𝑐 𝑖+1 𝑗 + 1 − 𝑢´ 𝑣´𝑐𝑖(𝑗+1) +
𝑢´𝑣´𝑐(𝑖+1)(𝑗+1), 

where 𝑢´ = 𝑢𝑛𝑥 − 𝑢𝑛𝑥 and v´ = 𝑣𝑛𝑦 − 𝑣𝑛𝑦



Linear interpolation

• Linearly interpolating uv coordinates does not produce the expected 
results



Why does this happen?

• Uniform steps in 2D screen space do not correspond to uniform steps 
over the surface of the triangle



Texturing 3D objects

• 3D mapping, which is a procedural approach, i.e. we use a 
mathematical procedure to create a 3D texture, i.e.

𝑓 𝑥, 𝑦, 𝑧 = 𝑐 𝑤𝑖𝑡ℎ 𝑐 ∈ ℝ3

• Then we use the coordinates of each point in our 3D model to 
calculate the appropriate color value using that procedure, i.e.

𝑓 𝑥𝑝, 𝑦𝑝, 𝑧𝑝 = 𝑐𝑝



3D stripe textures

• A simple example: stripes along the X-axis 

𝑠𝑡𝑟𝑖𝑝𝑒 𝑥𝑝, 𝑦𝑝, 𝑧𝑝 {

𝑖𝑓 𝑠𝑖𝑛𝑥𝑝 > 0

return color0;

else

return1;

}

}
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• Stripes with controllable width

𝑠𝑡𝑟𝑖𝑝𝑒 𝑝𝑜𝑖𝑛𝑡 𝑝, 𝑟𝑒𝑎𝑙 𝑤𝑖𝑑𝑡ℎ {
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}

}
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• Smooth variation between two colors, instead of two distinct ones

𝑠𝑡𝑟𝑖𝑝𝑒 𝑝𝑜𝑖𝑛𝑡 𝑝, 𝑟𝑒𝑎𝑙 𝑤𝑖𝑑𝑡ℎ {

t = (1 + sin
𝜋𝑥𝑝

𝑤𝑖𝑑𝑡ℎ
)/2

return 1 − 𝑡 𝑐0 + 𝑡𝑐1
}
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