
Texture Mapping
Rauno Näksi

Tartu, 2018

Computer Graphics Seminar 
MTAT.03.305



Motivation

• Just colored and shaded surfaces are not realistic



• How to turn



• One option: use a huge number of polygons with appropriate surface 
coloring and reflectance characteristics
• Mona Lisa with 50 semi-transparent Polygons



• We can improve the appearance of polygons by mapping images onto 
their surface



Goals with Texturing

• adding per-pixel surface details without raising the geometric 
complexity of a scene

• keep the number of vertices and primitives low

• add detail per fragment

• detail refers to any property that influences the final radiance, e.g. 
object or light properties

• modeling and rendering time is saved by keeping the geometrical 
complexity low



Types of Mapping

• Texture Mapping 
• Uses images to fill inside of polygons

• Environment (reflection mapping) 
• Uses a picture of the environment for texture maps 

• Allows simulation of highly specular surfaces 

• Bump mapping
• Emulates altering normal vectors during the rendering process

• And more



Texture Mapping 

• Instead of calculating color, shade, light, etc. for each pixel we just 
paste images to our objects in order to create the illusion of realism



Environment (reflection mapping) 



Bump mapping



Texture Mapping 



Texture mapping

• Adding lots of detail to our models to realistically depict skin, grass, 
bark, stone, etc., would increase rendering times dramatically, even 
for hardware-supported projective methods.



Texture mapping

• Adding lots of detail to our models to realistically depict skin, grass, 
bark, stone, etc., would increase rendering times dramatically, even 
for hardware-supported projective methods.



Concept

• 2D textures are represented as 2D images

• textures can store a variety of properties, i.e. colors, normals

• positions of texture pixels, i. e. texels, are characterized by texture
coordinates (u, v) in texture space

• texture mapping is a transformation from object space to texture space (x, 
y, z) -> (u, v) 
• texture coordinates (u, v) are assigned to a vertex (x, y, z) 

• texture mapping is generally applied per fragment 
• rasterization determines fragment positions and interpolates texture coordinates

from adjacent vertices
• texture lookup is performed per fragment using interpolated texture coordinates



Coordinate Systems

• Parametric coordinates 
• May be used to model curves and surfaces 

• Texture coordinates 
• Used to identify points in the image to be mapped

• Object or World Coordinates
• Conceptually, where the mapping takes place 

• Window Coordinates 
• Where the final image is really produced





Mapping Functions

• Basic problem is how to find the maps

• Consider mapping from texture coordinates to a point a surface

• Appear to need three functions 
• x = x(s,t) 

• y = y(s,t) 

• z = z(s,t) 

• But we really want to go the other way



Backward Mapping

• We really want to go backwards
• Given a pixel, we want to know to which point on an object it corresponds 

• Given a point on an object, we want to know to which point in the texture it 
corresponds 

• Need a map of the form 
• s = s(x,y,z) 

• t = t(x,y,z)



Non-parametric texture mapping

• With “non-parametric texture mapping”
• Texture size and orientation are fixed

• They are unrelated to size and orientation of polygon



Parametric texture mapping

• With “parametric texture mapping,” texture size and orientation are 
tied to the polygon. 

• Idea
• Separate “texture space” and “screen space” 

• Texture the polygon as before, but in texture space 

• Deform (render) the textured polygon into screen space 

• A texture can modulate just about any parameter – diffuse color, 
specular color, specular exponent, …



Implementing texture mapping

• To apply textures we need 2D coordinates on surfaces
• Parameterization

• A texture lives in it own abstract image coordinates parameterized by 
(u,v) in the range ([0..1], [0..1])

• Some objects have a natural parameterization



Mapping to texture image coordinates

• The texture is usually stored as an image. Thus, we need to convert
• from abstract texture coordinate (u,v) in the range ([0..1], [0..1]) 

• to texture image coordinates (𝑢𝑡𝑒𝑥, 𝑣𝑡𝑒𝑥) in the range ([0..𝑤𝑡𝑒𝑥], [0.. ℎ𝑡𝑒𝑥])



• What happens if object space (pixels) is between texture array
(texels)?

The pixel (i, j) in the 𝑛𝑥 × 𝑛𝑦 image for (u, v) is found by 
𝑖 = 𝑢𝑛𝑥 𝑎𝑛𝑑 𝑖 = 𝑣𝑛𝑦

𝑥 is the floor function that give the highest integer value ≤ x.



Nearest neighbor interpolation

• This is a version of nearest-neighbor interpolation, because we take 
the color of the nearest neighbor



• For smoother effects we may use bilinear interpolation
𝑐 𝑢, 𝑣 =

1 − 𝑢´ 1 − 𝑣´ 𝑐𝑖𝑗 +u´ 1 − 𝑣´ 𝑐 𝑖+1 𝑗 + 1 − 𝑢´ 𝑣´𝑐𝑖(𝑗+1) +
𝑢´𝑣´𝑐(𝑖+1)(𝑗+1), 

where 𝑢´ = 𝑢𝑛𝑥 − 𝑢𝑛𝑥 and v´ = 𝑣𝑛𝑦 − 𝑣𝑛𝑦



Linear interpolation

• Linearly interpolating uv coordinates does not produce the expected 
results



Why does this happen?

• Uniform steps in 2D screen space do not correspond to uniform steps 
over the surface of the triangle



Texturing 3D objects

• 3D mapping, which is a procedural approach, i.e. we use a 
mathematical procedure to create a 3D texture, i.e.

𝑓 𝑥, 𝑦, 𝑧 = 𝑐 𝑤𝑖𝑡ℎ 𝑐 ∈ ℝ3

• Then we use the coordinates of each point in our 3D model to 
calculate the appropriate color value using that procedure, i.e.

𝑓 𝑥𝑝, 𝑦𝑝, 𝑧𝑝 = 𝑐𝑝



3D stripe textures

• A simple example: stripes along the X-axis 

𝑠𝑡𝑟𝑖𝑝𝑒 𝑥𝑝, 𝑦𝑝, 𝑧𝑝 {

𝑖𝑓 𝑠𝑖𝑛𝑥𝑝 > 0

return color0;

else

return1;

}

}



3D stripe textures

• A simple example: stripes along the X-axis 

𝑠𝑡𝑟𝑖𝑝𝑒 𝑥𝑝, 𝑦𝑝, 𝑧𝑝 {

𝑖𝑓 𝑠𝑖𝑛𝑥𝑝 > 0

return color0;

else

return1;

}

}



• Stripes with controllable width

𝑠𝑡𝑟𝑖𝑝𝑒 𝑝𝑜𝑖𝑛𝑡 𝑝, 𝑟𝑒𝑎𝑙 𝑤𝑖𝑑𝑡ℎ {

𝑖𝑓 𝑠𝑖𝑛(𝜋𝑥𝑝/𝑤𝑖𝑑𝑡ℎ) > 0

return color0;

else

return1;

}

}



• Stripes with controllable width

𝑠𝑡𝑟𝑖𝑝𝑒 𝑝𝑜𝑖𝑛𝑡 𝑝, 𝑟𝑒𝑎𝑙 𝑤𝑖𝑑𝑡ℎ {

𝑖𝑓 𝑠𝑖𝑛(𝜋𝑥𝑝/𝑤𝑖𝑑𝑡ℎ) > 0

return color0;

else

return1;

}

}



• Smooth variation between two colors, instead of two distinct ones

𝑠𝑡𝑟𝑖𝑝𝑒 𝑝𝑜𝑖𝑛𝑡 𝑝, 𝑟𝑒𝑎𝑙 𝑤𝑖𝑑𝑡ℎ {

t = (1 + sin
𝜋𝑥𝑝

𝑤𝑖𝑑𝑡ℎ
)/2

return 1 − 𝑡 𝑐0 + 𝑡𝑐1
}



References

• http://www.inf.ed.ac.uk/teaching/courses/cg/lectures/slides8.pdf

• https://en.wikipedia.org/wiki/Texture_mapping

• http://courses.cs.vt.edu/~cs4204/lectures/texture_mapping.pdf

• https://www.cs.utexas.edu/users/fussell/courses/cs384g-
fall2011/lectures/lecture12-Texture_mapping.pdf

• http://www.cs.uu.nl/docs/vakken/gr/2011/Slides/06-texturing.pdf

• http://www.sci.tamucc.edu/~sking/Courses/COSC4328/Notes/Textur
es-6.pdf

•

http://www.inf.ed.ac.uk/teaching/courses/cg/lectures/slides8.pdf
https://en.wikipedia.org/wiki/Texture_mapping
http://courses.cs.vt.edu/~cs4204/lectures/texture_mapping.pdf
https://www.cs.utexas.edu/users/fussell/courses/cs384g-fall2011/lectures/lecture12-Texture_mapping.pdf
http://www.cs.uu.nl/docs/vakken/gr/2011/Slides/06-texturing.pdf
http://www.sci.tamucc.edu/~sking/Courses/COSC4328/Notes/Textures-6.pdf

