
Computer Graphics – The Vertex and Fragment Shaders

Three.js and GLSL Handout

In the example html files the shader codes are in the bottom of the file. They are indicated by <script> tags, 

which have type="x-shader/x-vertex" or type="x-shader/x-fragment". 

Main purpose of the vertex shader is to assign a correct position in the gl_Position built-in variable.

Main purpose of the fragment shader is to assign a correct color in the gl_FragColor built-in variable.

GLSL is very similar to C++ in syntax. However, it is meant to do mainly arithmetics (math ops). It has a 

very convenient syntax for matrices, vectors, trigonometric functions etc. Eg some tricks with vectors:

Syntax Meaning Syntax Meaning

vec3(1.0, 2.0, 3.0); Creates a vector [1, 2, 3] vec3 v = vec3(1.0, 2.0, 3.0);
vec2 u = v.xx;

Vector u will be [1, 1]

vec3(1.0); Creates a vector [1, 1, 1] float d = length(v); Variable d will have the length of v

vec3 v = vec3(0.0);
vec4 u = vec4(v, 1.0);

Vector u will be [0, 0, 0, 1] float x = dot(u, v); Variable x will have the dot product of
u and v.

vec3 v = vec3(1.0, 2.0, 3.0);
float x = v.x;

Variable x will be 1 vec3 w = cross(u, v); Vector w will be the cross product of 
u and v

vec3 v = vec3(1.0, 2.0, 3.0);
vec2 u = v.xy;

Vector u will be [1, 2] Vec3 r = reflect(v, n) Vector r will be the reflection vector 
of v off a surface with the normal n.

Google: "webgl api quick reference card", it is an official reference card, pages 3 and 4 give a great overview of WebGL-s GLSL syntax.

Code inside the void main() 
function will be executed



The uniform, attribute and varying variables should be declared before the void main() function in the 

shaders. Three.js library already sets and sends a lot of common variables automatically. For example the 

uniform matrices projectionMatrix, modelViewMatrix. Here are some of them in the vertex shader:

Variable Meaning Variable Meaning

uniform mat4 modelMatrix Transforms coordinates from local 
space to world space.

uniform vec3 cameraPosition Camera's coordinates in world 
space.

uniform mat4 viewMatrix Transforms coordinates from world 
space to view space.

attribute vec3 position Vertex coordinates in local space.

uniform mat4 modelViewMatrix Transforms coordinates from local 
space to view space.

attribute vec3 normal Normal vector of the vertex.

uniform mat4 projectionMatrix Transforms coordinates from view 
space to clip space.

attribute vec2 uv UV-coordinates of the vertex

uniform mat3 normalMatrix Transforms normal vectors from local 
space to view space.

Lambertian reflectance model specifies that light scatters from the surface to all

directions equally. The final color we see is independant of the viewer's position. 

This is a completely ideal matte surface.

However, the amount of light reaching the surface depends

on the light's direction. Greater the angle between the surface

normal and the vector towards the light source, less light will

reach one surface unit.

The amount of light reaching one surface unit is proportional to the cosine of the

angle between the normal and direction towards the light source.

Cosine of an angle between two vectors can be calculated with a dot product if the vectors are normalized 

(have unit length). The cosine could also be negative. In lighting calculations it does not make sense to have 

a negative value there, so usually the maximum of 0 and the dot product result is taken.

reflectedLight=max(0, vectorTowardsLight⋅normal )

The reflected light intensity also depends on the intensity of the light source and material's reflective 

properties. For example, the material only reflects 50% of the incoming light. The light source is dim etc.

reflectedLight=lightIntensity⋅materialReflectivity⋅max(0,vectorTowardsLight⋅normal)

We define the color with the red, green and blue intensity components. The Lambertian reflection model is 

applied to each of those components using the light and material color values.

In real environments light does not come only from a single source, but bounces around everywere. There is 

almost always some ambient light around the environment, illuminating objects indirectly. Calculating that 

is a great challenge in computer graphics with different solutions balancing realism and computational 

complexity. The most simplest way is to just add a very small value to the intensity calculations in the 

model. This way the surface not directly illuminated will not be totally black.


