Computer Graphics Seminar

MTAT.03.305

Fall 2019

Raimond Tunnel
Previously...

$M = M_1 \cdot M_2 \cdot M_3 \cdot \ldots$

$P \cdot V \cdot M \cdot v$

$\left(\frac{v_x}{v_w}, \frac{v_y}{v_w}, \frac{v_z}{v_w} \right)$
Previously...

- We define our geometry (points, lines, triangles)
- We apply transformations (matrices)

$$\begin{pmatrix} \cos(45^\circ) & -\sin(45^\circ) \\ \sin(45^\circ) & \cos(45^\circ) \end{pmatrix} \begin{array}{c} \\ \end{array} = \begin{array}{c} \end{array}$$

When is this true?
Now we add color?

What exactly is here?

Adding color... ?
Material properties

- We want GPU to take into account a color property when rendering some geometry.

What is depicted here?

http://cgdemos.tume-maailm.pri.ee/
Material properties

- We want GPU to take into account a color property when rendering some geometry.

Red cube?
Two red trapezoids?
Flat red polygon?

http://cgdemos.tume-maailm.pri.ee/
What is color?
What is color?

- Spectrum of the **light reflected** off a surface.
What is color?

- Spectrum of the light reflected off a surface.
- In 3D it is not enough to just say that a thing is red.
What is color?

- Spectrum of the light reflected off a surface.
- In 3D it is not enough to just say that a thing is red.
- We need to say that somewhere we have a some kind of light source.
Directional light

- Ok, we define a light direction
Directional light

- Ok, we define a light direction
- A surface
Directional light

- Ok, we define a light direction
- A surface
- Viewer
Directional light

- Ok, we define a light direction
- A surface
- Viewer

Viewer does not see surface point at 4?
Directional light

- Reality – our surfaces are diffusely reflective!
Diffuse Reflection

- Light entering at a specific angle
Diffuse Reflection

- Photon excites an atom
Diffuse Reflection

- The energy is transferred to the next atom
Diffuse Reflection

- The energy is transferred to the next atom
- Some energy is absorbed
Diffuse Reflection

- Excited atoms vibrate, giving off heat
Diffuse Reflection

- Finally photon exits the surface
Diffuse Reflection

- In a quite random direction
Diffuse Reflection

• This is *generally* how **pigments** work

Nice post: https://physics.stackexchange.com/a/240848
Diffuse Reflection

- Can be caused by other reasons too!
Diffuse Reflection

• Can be caused by other reasons too!

• For example **structural coloration** in nature.

https://en.wikipedia.org/wiki/Pollia_condensata

All of these feathers are actually brown.
Diffuse Reflection

- Can be caused by other reasons too!
- For example **structural coloration** in nature.
Diffuse Reflection

- Let's assume **diffuse light scatters uniformly**
Diffuse Reflection

- So all we need now is the angle between the surface normal and the light's direction.

 More correct is: direction towards the light

By the way, the scattered light intensities may not be equal in all directions...
See glossy reflection.

- Why this angle?
Diffuse Reflection

Hint?
Diffuse Reflection

- The actual light energy per surface unit depends on the angle.

\[\frac{1}{\cos(45^\circ)} \approx 1.42 \quad \frac{1}{\cos(80.81^\circ)} \approx 6.26 \]
Diffuse Reflection & Directional Light

- Given a surface point and a light source, we can calculate the color of that surface point.
- We use a \textit{cosine} between the surface normal and a \textit{vector} going towards the light source.
Diffuse Reflection & Directional Light

• To find the cosine of the angle, we can use a scalar / dot product operation.

$$v \cdot u = ||v|| \cdot ||u|| \cdot \cos(\text{angle}(u, v))$$

Geometric definition
To find the cosine of the angle, we can use a scalar / dot product operation.

\[\mathbf{v} \cdot \mathbf{u} = \| \mathbf{v} \| \| \mathbf{u} \| \cos(\text{angle}(\mathbf{u}, \mathbf{v})) \]

\[\mathbf{v} \cdot \mathbf{u} = v_1 u_1 + v_2 u_2 + v_3 u_3 \]

Diffuse Reflection & Directional Light

Algebraic definition
Diffuse Reflection & Directional Light

• To find the cosine of the angle, we can use a scalar / dot product operation.

\[v \cdot u = \|v\| \cdot \|u\| \cdot \cos(\text{angle}(u, v)) \]
\[v \cdot u = v_1 \cdot u_1 + v_2 \cdot u_2 + v_3 \cdot u_3 \]

Geometric definition
Algebraic definition

• When we have normalized (unit) vectors, geometric definition simplifies to:

\[v \cdot u = \|v\| \cdot \|u\| \cdot \cos(\alpha) = 1 \cdot 1 \cdot \cos(\alpha) = \cos(\alpha) \]
Diffuse surface and directional light

- So if we put those two definitions together:

\[\mathbf{v} \cdot \mathbf{u} = v_1 u_1 + v_2 u_2 + v_3 u_3 = \cos(\alpha) \]

This should be quite easy for the computer to calculate...
Diffuse surface and directional light

- The dot product and the cosine between two vectors are used quite often in CG.

\[\cos(\alpha) = l \cdot n \]
Diffuse surface and directional light

- Dot product of two vectors \(u \) and \(v \) is the same as vector multiplication.

\[
v \cdot u = v_1 \cdot u_1 + v_2 \cdot u_2 + v_3 \cdot u_3 = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = v^T u
\]

- So for our surface point we get:

\[
Intensity = directionTowardsLight^T \cdot surfaceNormal
\]

\[
I = l^T \cdot n
\]

\[
I \in [0,1]
\]

What is the visual result of that?
Diffuse surface and directional light

- Two missing things:
 - Intensity of the light source $L \in [0, 1]$
 - Reflectivity of our material $M \in [0, 1]$
Diffuse surface and directional light

- Also the color!
- We apply to each of 3 RGB channels.

\[
\begin{align*}
I_R &= n^T \cdot l \cdot L_R \cdot M_R \\
I_G &= n^T \cdot l \cdot L_G \cdot M_G \\
I_B &= n^T \cdot l \cdot L_B \cdot M_B
\end{align*}
\]

Light that light source emits

Light that material reflects
$L_{diff} = 1.0$
$L_{diff} = 0.7$
\[L_{diff} = 0.7 \]

\[n \cdot l \approx 0.9 \]
$$L_{diff} = 0.7$$

$$M_{diff} = 1.0$$

$$\mathbf{n} \cdot \mathbf{l} \approx 0.9$$
Diffuse surface and directional light

What color are the apples if red light shines upon them?

What is wrong with this example? (2+ things)
Point light

- Point lights work the same way, but the light source is a point.
Point light

- Sometimes distance **attenuation** parameters are added.
Point light

- Sometimes distance **attenuation** parameters are added.
- In OpenGL:

\[
\text{attenuation} = \frac{1}{k_c + k_l \cdot d + k_q \cdot d^2}
\]

- In Three.js:

```javascript
PointLight(hex, intensity, distance)
```

Distance - If non-zero, light will attenuate linearly from maximum intensity at light position down to zero at distance.

http://threejs.org/docs/#Reference/Lights/PointLight
Ambient light

- So, now we have 2 lights and a diffuse surface.
- Are we OK?
Ambient light

- World contains much more than 1 cube and a light source.
- Do you know what scene this is?
- Calculating every reflection from every other object is time-consuming.
- What can we do?
Ambient light

- Ambient light source – estimates the light reflected off of other objects in the scene
Ambient light

- Ambient light source – estimates the light reflected off of other objects in the scene
- Ambient material property – how much object reflects that light (usually same as diffuse)
Ambient light

- Ambient light source – estimates the light reflected off of other objects in the scene.
- Ambient material property – how much object reflects that light (usually same as diffuse).
Lambert material

- So together with diffuse lighting we get:

\[I_R = L_{AR} \cdot M_{AR} + n_T \cdot l \cdot L_{DR} \cdot M_{DR} \]

\[I_G = L_{AG} \cdot M_{AG} + n_T \cdot l \cdot L_{DG} \cdot M_{DG} \]

\[I_B = L_{AB} \cdot M_{AB} + n_T \cdot l \cdot L_{DB} \cdot M_{DB} \]

What could go wrong?
Is this it?

- Well, we have already made a very rough approximation of reality with the ambient term.
- Is there anything else that we have forgotten?
Specular Reflection

- Materials also reflect light specularly.
Specular Reflection

- Materials also reflect light specularly.
- Especially varnished materials and metals!
Specular Reflection

- Materials also reflect light specularily.
- Especially varnished materials and metals!
- Specular reflection is the direct reflection of the light from the environment.
Specular Reflection

- Materials also reflect light specularly.
- Especially varnished materials and metals!
- Specular reflection is the direct reflection of the light from the environment.
- Often we want just a **specular highlight** –

 – that is the **reflection of the light source**!
Specular highlight

- Depends on the viewer's position.
Specular highlight

- At point 4, which viewer direction should produce more specular highlight?
Specular highlight

- How to calculate that based on β?
Specular highlights

- Ok, so add a specular term based on the actual reflection direction (r) and viewer direction (v).

\[
I_R = L_{A_R} \cdot M_{A_R} + n^T \cdot l \cdot L_{D_R} \cdot M_{D_R} + r^T \cdot v \cdot L_{S_R} \cdot M_{S_R}
\]

\[
I_G = L_{A_G} \cdot M_{A_G} + n^T \cdot l \cdot L_{D_G} \cdot M_{D_G} + r^T \cdot v \cdot L_{S_G} \cdot M_{S_G}
\]

\[
I_B = L_{A_B} \cdot M_{A_B} + n^T \cdot l \cdot L_{D_B} \cdot M_{D_B} + v^T \cdot r \cdot L_{S_B} \cdot M_{S_B}
\]
Specular highlights

- Ok, so add a specular term based on the actual reflection direction \((r)\) and viewer direction \((v)\).

\[
I_R = L_{A_R} \cdot M_{A_R} + n^T \cdot l \cdot L_{D_R} \cdot M_{D_R} + r^T \cdot v \cdot L_{S_R} \cdot M_{S_R}
\]

\[
I_G = L_{A_G} \cdot M_{A_G} + n^T \cdot l \cdot L_{D_G} \cdot M_{D_G} + r^T \cdot v \cdot L_{S_G} \cdot M_{S_G}
\]

\[
I_B = L_{A_B} \cdot M_{A_B} + n^T \cdot l \cdot L_{D_B} \cdot M_{D_B} + v^T \cdot r \cdot L_{S_B} \cdot M_{S_B}
\]

Some properties are usually the same in the same channel.

Any errors on the slide?

Is there something missing?
Specular highlights

- Specular highlight values for different angles:

<table>
<thead>
<tr>
<th>M_s</th>
<th>L_s</th>
<th>β</th>
<th>$\sim \cos(\beta)$</th>
<th>$\sim I$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>1</td>
<td>10°</td>
<td>0.98</td>
<td>0.25</td>
</tr>
<tr>
<td>0.25</td>
<td>1</td>
<td>20°</td>
<td>0.94</td>
<td>0.24</td>
</tr>
<tr>
<td>0.25</td>
<td>1</td>
<td>30°</td>
<td>0.87</td>
<td>0.22</td>
</tr>
<tr>
<td>0.25</td>
<td>1</td>
<td>40°</td>
<td>0.77</td>
<td>0.19</td>
</tr>
<tr>
<td>0.25</td>
<td>1</td>
<td>50°</td>
<td>0.64</td>
<td>0.16</td>
</tr>
<tr>
<td>0.25</td>
<td>1</td>
<td>60°</td>
<td>0.5</td>
<td>0.12</td>
</tr>
<tr>
<td>0.25</td>
<td>1</td>
<td>70°</td>
<td>0.34</td>
<td>0.09</td>
</tr>
<tr>
<td>0.25</td>
<td>1</td>
<td>80°</td>
<td>0.17</td>
<td>0.04</td>
</tr>
<tr>
<td>0.25</td>
<td>1</td>
<td>90°</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This is actually too little change in the result for such a big change from 10° to 20°.

This is too much for such big angles.

Assume we are dealing with one channel (e.g. red)
Assume the channel values are between $[0, 1]$ (mapped later to $[0, 255]$)
Specular highlights

- How to increase the contrast? Use a power.

<table>
<thead>
<tr>
<th>β</th>
<th>(\sim\cos^2(\beta))</th>
<th>(\sim l)</th>
<th>(\sim\cos^3(\beta))</th>
<th>(\sim l)</th>
<th>(\sim\cos^4(\beta))</th>
<th>(\sim l)</th>
<th>(\sim\cos^5(\beta))</th>
<th>(\sim l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°</td>
<td>0.97</td>
<td>0.24</td>
<td>0.96</td>
<td>0.24</td>
<td>0.94</td>
<td>0.23</td>
<td>0.92</td>
<td>0.23</td>
</tr>
<tr>
<td>20°</td>
<td>0.88</td>
<td>0.22</td>
<td>0.83</td>
<td>0.21</td>
<td>0.78</td>
<td>0.20</td>
<td>0.73</td>
<td>0.18</td>
</tr>
<tr>
<td>30°</td>
<td>0.75</td>
<td>0.19</td>
<td>0.65</td>
<td>0.16</td>
<td>0.56</td>
<td>0.14</td>
<td>0.49</td>
<td>0.12</td>
</tr>
<tr>
<td>40°</td>
<td>0.59</td>
<td>0.15</td>
<td>0.45</td>
<td>0.11</td>
<td>0.34</td>
<td>0.09</td>
<td>0.26</td>
<td>0.07</td>
</tr>
<tr>
<td>50°</td>
<td>0.41</td>
<td>0.10</td>
<td>0.27</td>
<td>0.07</td>
<td>0.17</td>
<td>0.04</td>
<td>0.11</td>
<td>0.03</td>
</tr>
<tr>
<td>60°</td>
<td>0.25</td>
<td>0.06</td>
<td>0.13</td>
<td>0.03</td>
<td>0.06</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>70°</td>
<td>0.12</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>80°</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>90°</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Values above 0.25 are in red
Specular highlights

• Specify some **shininess** value \(c \) for the material

\[
I_R = L_{A_R} \cdot M_{A_R} + n^T \cdot l \cdot L_{D_R} \cdot M_{D_R} + (r^T \cdot v)^c \cdot L_{S_R} \cdot M_{S_R}
\]

\[
I_G = L_{A_G} \cdot M_{A_G} + n^T \cdot l \cdot L_{D_G} \cdot M_{D_G} + (r^T \cdot v)^c \cdot L_{S_G} \cdot M_{S_G}
\]

\[
I_B = L_{A_B} \cdot M_{A_B} + n^T \cdot l \cdot L_{D_B} \cdot M_{D_B} + (r^T \cdot v)^c \cdot L_{S_B} \cdot M_{S_B}
\]
Specular highlights

$c=0$

$c=30$

$c=90$

$c=300$
Phong's Lighting Model

\[I_R = L_{AR} \cdot M_{AR} + n^T \cdot l \cdot L_{DR} \cdot M_{DR} + (r^T \cdot v)^c \cdot L_{SR} \cdot M_{SR} \]

\[I_G = L_{AG} \cdot M_{AG} + n^T \cdot l \cdot L_{DG} \cdot M_{DG} + (r^T \cdot v)^c \cdot L_{SG} \cdot M_{SG} \]

\[I_B = L_{AB} \cdot M_{AB} + n^T \cdot l \cdot L_{DB} \cdot M_{DB} + (r^T \cdot v)^c \cdot L_{SB} \cdot M_{SB} \]

Ambient light approximation.
Phong's Lighting Model

\[I_R = L_{A_R} \cdot M_{A_R} + n^T \cdot l \cdot L_{D_R} \cdot M_{D_R} + (r^T \cdot v)^c \cdot L_{S_R} \cdot M_{S_R} \]

\[I_G = L_{A_G} \cdot M_{A_G} + n^T \cdot l \cdot L_{D_G} \cdot M_{D_G} + (r^T \cdot v)^c \cdot L_{S_G} \cdot M_{S_G} \]

\[I_B = L_{A_B} \cdot M_{A_B} + n^T \cdot l \cdot L_{D_B} \cdot M_{D_B} + (r^T \cdot v)^c \cdot L_{S_B} \cdot M_{S_B} \]

Lambertian / diffuse reflectance
Phong's Lighting Model

\[I_R = L_{A_R} \cdot M_{A_R} + n^T \cdot l \cdot L_{D_R} \cdot M_{D_R} + (r^T \cdot v)^c \cdot L_{S_R} \cdot M_{S_R} \]

\[I_G = L_{A_G} \cdot M_{A_G} + n^T \cdot l \cdot L_{D_G} \cdot M_{D_G} + (r^T \cdot v)^c \cdot L_{S_G} \cdot M_{S_G} \]

\[I_B = L_{A_B} \cdot M_{A_B} + n^T \cdot l \cdot L_{D_B} \cdot M_{D_B} + (r^T \cdot v)^c \cdot L_{S_B} \cdot M_{S_B} \]

Phong's specular reflectance term
Phong's Lighting Model

\[I_R = L_{A_R} \cdot M_{A_R} + n^T \cdot l \cdot L_{D_R} \cdot M_{D_R} + (r^T \cdot v)^c \cdot L_{S_R} \cdot M_{S_R} \]

\[I_G = L_{A_G} \cdot M_{A_G} + n^T \cdot l \cdot L_{D_G} \cdot M_{D_G} + (r^T \cdot v)^c \cdot L_{S_G} \cdot M_{S_G} \]

\[I_B = L_{A_B} \cdot M_{A_B} + n^T \cdot l \cdot L_{D_B} \cdot M_{D_B} + (r^T \cdot v)^c \cdot L_{S_B} \cdot M_{S_B} \]

Something still missing?
Blinn-Phong model

- Sometimes Phong's specular term is replaced with Blinn-Phong's specular term.
Blinn-Phong model

- Sometimes Phong's specular term is replaced with Blinn-Phong's specular term.

- Instead of viewer direction and reflected light's direction, we use the **surface normal** and a **half angle vector** between the light source and the viewer.
Blinn-Phong model

- There are some differences
- These are not the only two possibilities

DEMO 2: http://cgdemos.tume-maailm.pri.ee/
THREE.JS videos: https://www.udacity.com/course/viewer#!/c-cs291/l-124106593/m-157996647
Now You Know

- Vertex transformations
- Culling & Clipping
- Rasterization
- Fragment shading
- Visibility tests & Blending

Data

- M_{amb}
- M_{diff}
- M_{spec}

Light Source

- L_{amb}
- L_{diff}
- L_{spec}

Fragment shader

Vertex shader
The Standard Graphics Pipeline

- Vertex transformations
- Culling & Clipping
- Rasterization
- Fragment shading
- Visibility tests & Blending

Data

Vertex shader

Fragment shader

Light Source

\[M = M_1 \cdot M_2 \cdot M_3 \cdot \ldots \]

\[P \cdot V \cdot M \cdot v \]

\[
\begin{pmatrix}
v_x \\ v_y \\ v_z \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
v_w \\ v_w \\ v_w \\
\end{pmatrix}
\]

Conclusion

- Computer graphics can be used to create a illusion of reality

![Diagram]

- First approximation is of the shape – geometry
- GPU wants those triangles
- Vertices and transformation matrices
Conclusion

- Many ways to approximate lighting (Lambert, Phong, Blinn), reflections, refractions, shadows...

- **Ambient, diffuse, specular terms**

\[I = L_A \cdot M_A + n^T \cdot l \cdot L_D \cdot M_D + (r^T \cdot v)^c \cdot L_S \cdot M_S \]
Thanks for listening!
Next Time

• Shaders in WebGL
• Shader Programming Workshop (all of this in practice)
• Bring your laptop!