Contact Information

- Raimond Tunnel – jee7@ut.ee
Organizational Information

- 16 seminars:
 - 4 introductory lectures
 - 3 student presentations
 - 6 unknown
 - 1 project expo
 - 1 thesis defense practice

(info TBA)
Organization

• 16 seminars
 Attendance: ~24h = 0.85 credits

• 1 seminar
 Preparation: 56h = 2.1 credits
 Conducting: 1.5h = 0.05 credits
Organization

- 16 seminars
 Attendance: \(\sim 24h = 0.85 \text{ credits} \)

- 1 seminar
 Preparation: \(56h = 2.1 \text{ credits} \)
 Conducting: \(1.5h = 0.05 \text{ credits} \)
Organization

• 16 seminars
 Attendance: ~24h = 0.85 credits

• 1 seminar
 Preparation: **56h** = 2.1 credits
 - Find suitable material (8h)
 - Read and understand the material (25h)
 - Synthesize a logical approach to the topic (10h)
 - Create a presentation (10h)
 - Practice the presentation (3h)
 Conducting: 1.5h = 0.05 credits
Organization

- **16 seminars**
 Attendance: \(~24h = 0.85\) credits

- **1 seminar**
 Preparation: **56h = 2.1** credits
 - Find suitable material (8h)
 - Read and understand the material (25h 10h)
 - Synthesize a logical approach to the topic (40h 2h)
 - Create a presentation (40h 5h)
 - Practice the presentation (3h)
 - Implement a demo (28h)

Conducting: **1.5h = 0.05** credits
What am I even doing here?
What do I see?
What about this one?
Or this one?
Or this one?
This one should be easy...
The Seminar

- Explore an interesting CG topic
The Seminar

- Tackle a difficult subject together
The Seminar

• Tell (teach) others about your discoveries
How do I choose a topic?
How do I choose a topic?

- What do you need to understand for your thesis?

When they ask

How is your thesis going
How do I choose a topic?

- What do you need to understand for your thesis?
- What knowledge will benefit you after the uni?

Ninja Theory developer talking about atmospheric VFX in Hellblade: https://www.youtube.com/watch?v=jdZ1s3FHTFI
How do I choose a topic?

- What do you need to understand for your thesis?
- What knowledge will benefit you after the uni?
- What did you come here to learn about CG?
How do I choose a topic?

- What do you need to understand for your thesis?
- What knowledge will benefit you after the uni?
- What did you come here to learn about CG?
- What do you find interesting in CG?

Fractal by Julius Horsthuis
http://www.julius-horsthuis.com/
How do I choose a topic?

- What do you need to understand for your thesis?
- What knowledge will benefit you after the uni?
- What did you come here to learn about CG?
- What do you find interesting in CG?
What is this?
Post-Processing: Bloom effect

Need for Speed: Most Wanted

Elephant's Dream

Hitman: Absolution

Warframe: https://www.youtube.com/watch?v=gYHxhlvEyHk
Post-Processing: Bloom effect

Elder Scrolls 3: Oblivion
Back to the main track
How to find materials?
How to find materials?

- The Interwebs.
 - Examples of some quality web articles:
 - GTA V Graphics Study by Adrian Courreges
 http://www.adriancourreges.com/blog/2015/11/02/gta-v-graphics-study/
 - Article lists by Jendrik Illner
 https://www.jendrikillner.com/post/
 - Volumetric Fog by Kostas Anagnostou
 https://interplayoflight.wordpress.com/2015/07/03/adventures-in-postprocessing-with-unity/
 - Just Google and be critical about what you find!
How to find materials?

- The Interwebs.
- UT library databases.
 - https://utlib.ut.ee/andmebaasid
 - ACM SIGGRAPH
 - IEEE Transactions on Visualization and CG
 - IEEE Transactions on Games

Be critical here as well...
How to find materials?

- The Interwebs.
- UT library databases.
- Books.
 - Fundamentals of Computer Graphics
 - GPU Pro 1-7, GPU Zen
 - Many-many others...
Conditions

<table>
<thead>
<tr>
<th>First time student</th>
<th>Choose any CG-related topic you want!</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSc, MSc</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Returning student</th>
<th>Your topic should be related to several scientific articles or books.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc, PhD</td>
<td></td>
</tr>
</tbody>
</table>

- In either case, ensure you benefit from the topic!
- Can be the same that others have done before.
Previously...

PREVIOUSLY, ON SCRUBS...
Oh Wait, This Ain't Scrubs...
Post-Processing Effects
CPU vs GPU
Use Case Study: Coco
Motion Tracking
Reinforcement Learning in Games
Modern GPU Architecture

Moore’s Law at work

<table>
<thead>
<tr>
<th>GPU</th>
<th>GT200 (Tesla)</th>
<th>GF110 (Fermi)</th>
<th>GK104 (Kepler)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistors</td>
<td>1.4 billion</td>
<td>3.0 billion</td>
<td>3.54 billion</td>
</tr>
<tr>
<td>CUDA Cores</td>
<td>240</td>
<td>512</td>
<td>1536</td>
</tr>
<tr>
<td>Graphics Core Clock</td>
<td>648MHz</td>
<td>772MHz</td>
<td>1006MHz</td>
</tr>
<tr>
<td>Shader Core Clock</td>
<td>1476MHz</td>
<td>1544MHz</td>
<td>n/a</td>
</tr>
<tr>
<td>GFLOPs</td>
<td>1063</td>
<td>1581</td>
<td>3090</td>
</tr>
<tr>
<td>Texture Units</td>
<td>80</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>Texel fill-rate</td>
<td>51.8 Gigatexels/sec</td>
<td>49.4 Gigatexels/sec</td>
<td>128.8 Gigatexels/sec</td>
</tr>
<tr>
<td>Memory Clock</td>
<td>2484 MHz</td>
<td>4008 MHz</td>
<td>6008MHz</td>
</tr>
<tr>
<td>Memory Bandwidth</td>
<td>159 GB/sec</td>
<td>192.4 GB/sec</td>
<td>192.26 GB/sec</td>
</tr>
<tr>
<td>Max # of Active Displays</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>TDP</td>
<td>183W</td>
<td>244W</td>
<td>195W</td>
</tr>
</tbody>
</table>
Guest: Jaanus Jaggo
Guest: Ats Kurvet
Guest: Hendrik Proosa
Still confused?
World is a vast and mysterious place!

When you have a topic...

- Look for materials
- Investigate, research
- Find examples
- Try it out yourself
- Present your findings
- Engage others
 - Discussion
 - Interactive demo
 - Workshop
Creating a Presentation
Creating a Presentation

Ensure you understand what you put on the slide!

\[L_o = L_e + \int_{\Omega} L_i \cdot f_r \cdot \cos \theta \cdot d\omega \]
Creating a Presentation

Ensure you understand what you put on the slide!

Use big fonts, use your slide space optimally.
Creating a Presentation

Ensure you understand what you put on the slide!

Use big fonts, use your slide space optimally.
Creating a Presentation

Ensure you understand what you put on the slide!
Use big fonts, use your slide space optimally.
Try to make the drawings, diagrams etc yourself.
Creating a Presentation

Ensure you understand what you put on the slide!
Use big fonts, use your slide空间 optimally.
Try to make the drawings, diagrams etc yourself.
Put drawings, diagrams etc on the slides!
Creating a Presentation

Ensure you understand what you put on the slide!
Use big fonts, use your slide space optimally.
Try to make the drawings, diagrams etc yourself.
Put drawings, diagrams etc on the slides!
Try to implement what you share.
Creating a Presentation

Ensure you understand what
Use big fonts, use your slide
Try to make the drawings, dia
Put drawings, diagrams etc o
Try to implement what you s"

The quality should be on par with a thesis level.
Creating a Presentation

Ensure you understand what you put on the slide!
Use big fonts, use your slide space optimally.
Try to make the drawings, diagrams etc yourself.
Put drawings, diagrams etc on the slides!
Try to implement what you share.
The quality should be on par with a...

You are the master of your topic!
Creating a Presentation

- Ensure you understand what you put on the slide!
- Use big fonts, use your slide space optimally.
- Try to make the drawings, diagrams etc yourself.
- Put drawings, diagrams etc on the slides!
- Try to implement what you share.
- The quality should be on par with a thesis level.
- You are the master of your topic!
Want to do projects?

- **Computer Graphics Project** (MTAT.03.328)
 - 3 credits course
 - Consists entirely of a project
 - Work on your own idea throughout the semester
 - Roughly 7h per every 2 weeks
I don't even know where to start!?

- There will be 3 introductory lectures about the basics.
- Check out the topics from Computer Graphics:

 https://courses.cs.ut.ee/2017/cg/fall

- Check out the topics from the previous seminar:

 https://courses.cs.ut.ee/2018/cg-sem/spring/Main/Seminars
 https://courses.cs.ut.ee/2018/cg-sem/fall/Main/Seminars

- Find some online tutorial and try it out.
Computer Science
MSc Seminar Module

Goal:

The goal of the module is to give students the opportunity to deepen their understanding of the field most interesting for them and to develop their communication skills.

Learning outcomes:

After completing the module the student:
- is capable of independent work with modern research literature and other field-related material;
- can effectively communicate his knowledge of the field to others.
Questions?
List of some arbitrary topics

1. **Color blending** – What happens when there are transparent objects in your scene?

2. **Lighting models** – What are the common models? Where and when are they used?

3. **Texturing** – How can one sample from a texture? What kinds of artefacts may appear?

4. **Curves** – Why are they important in CG? What about curved surfaces?

5. **Global illumination** – Pick one or compare different methods: Radiosity, path tracing, photon mapping.

6. **Realtime realistic rendering** – Provide an overview of the common methods or pick some effect (light, wetness, fog, fur / hair) and find out how it's rendered realistically in real time.

7. **Non-photorealistic rendering** – Where is it used and how is it achieved? Realtime vs prerendered?

8. **Tessellation** – How can this be done in OpenGL 4?

9. **Post-processing effects** – What effects are there? When and how are they used?

10. **Procedural generation** – Where and how is it used? How to apply procedural textures to procedurally generated meshes?
List of some other topics

11. Physically-Based Shading – What is it? Why is it important to understand physical properties of materials for shading? What games / game engines use it?

12. Rendering in VR – What extra considerations are in VR? How do different technologies overcome them?

13. Vulkan / WebGL 2.0 – What is it for? Why is it useful? How to Vulkan / WebGL 2.0?

14. Subsurface scattering – What is it? How it is implemented? What does it solve?

15. Reflections and caustics – What are the modern techniques, which do those?

16. GLSL vs HLSL – What are the differences? How are both used?

17. Use case study – Find out in detail how graphics are done in one game or movie.

18. Motion capture – What are the difficulties today? Best budget setup for it?

19. Modern GPU architecture – How are GPU-s built today? What are they optimized for?

20. Graphics on consoles / smartphones – What limitations are there in consoles or embedded systems vs the PC? How to overcome them compared to the PC approach?
List of some other topics

21. Tileable Textures – What methods are there for creating those?
22. Ray Tracing with RTX – What can be done with Nvidia's RTX cards?
23. Occlusion Culling – How is this achieved? What data structures are used?
24. Volumetric Rendering – How to simulate volumetric light transport? Fog, fire?
25. Facial Animations – What are the modern, cheapest, professional solutions?

Full list: https://courses.cs.ut.ee/2019/cg-sem/spring/Main/Seminars#topics
(with links)