
Augmented Reality and Point
Set Matching

Author: Karl - Walter Sillaots

What is Augmented Reality (AR)?

• Mixed interactive experience – real-world environment with
computer-generated information
• Visual

• Auditory

• Optionally, haptic, neural, smell

• System that fulfils 3 conditions:
• A combination of real and virtual worlds

• Real-time interaction

• Accurate 3D registration of virtual and real objects

Current Use Cases?

• Not used often in commercial products

• Furniture

• Visual aid

• “Augments” the environment

Devices

• Camera – to perceive the world and make decisions from it
• A computer with a camera

• Smart devices (phones, tablets)

• Head-Mounted Display

Virtual Reality or Augmented Reality?

• VR – The perception of reality is all based on virtual information

Virtual Reality or Augmented Reality?

• AR – Part of the environment is “real”, with virtual objects on top of it

Augmented Reality History

1968

• Note - VR and AR didn’t exist at this point, only Artificial Reality

1968

• The Sword of Damocles
• Created by Ivan Sutherland

• 2 CRT screens for either eye
• Screens display 2D objects at

different angles

• Head position sensors

• Wireframe objects

1969

• Glowflow
• Myron Krueger

• Wanted Artificial Reality that didn’t
need goggles or gloves to interact

• Dark room filled with
phosphorescent pigments

• Floor sensors reacted to movement,
synthesizer sounds, origin, lighting

• Issues with trigger mechanisms

1970

• Metaplay

• 2 Rooms connected through a video
feed

• “Artist” sees others through
camera, can interact with a drawing
tablet

• Participants saw themselves project
on media screen, on which the
artist can write and draw on

1971

• Psychic Space

• Advancement of Glowflow

• Improved sensor detection

• Invisible maze, user location
displayed on screen with “wall”
locations

1974

• Videoplace

• 2 rooms where image of one side
projected to other. Both
participants see the same image

• More interactivity
• Playing with a virtual ball

• Changing their displayed image,
resizing, rotating

• Typing text

• Computer Vision

1990

• The term “Augmented Reality” was used for the first time
• Thomas Caudell (David Mizell)

• Developed an industrial AR head mounted display

• Displays computer-generated diagrams of the manufacturing process

• Branched off as industrial AR (supporting industrial work)

1992

• Virtual Fixtures
• Louis Rosenberg

• First fully functional AR system

• Displays and overlays virtual sensor
information

• 3D graphics slow at that time, uses 2
physical robots instead

• Binocular magnifiers aligned user view with
robot arms for better immersion

1994-1998

• Various entertainment use cases

• Sportsvision displaying a yellow line
in American Football games
• Individually displayed and updated for

every camera showing games

• Samples field / players for line
occlusion effects

1999

• NASA hybrid synthetic vision system for spacecraft

2000

• Open-source software library ARToolKit developed.

• Video tracking to overlay virtual graphics on top of it.

• Still being updated today

2001-2013

• 2003 – NFL usage of Skycam for virtual markers

• 2009 – Esquire Magazine with scannable barcodes to display AR
content

• 2013 – Volkswagen using AR as car manuals (MARTA)

2014,2016

• Google Glass, Microsoft Hololens

• More immersive alternatives to
smartphones

• Google Glass had a camera, touchpad,
voice commands.

• Hololens have an accelerometer,
gyroscope, magnetometer, depth-camera,
multiple microphones, light sensor.

The Future?

Feature Detection

Feature Detection

• A subcategory of computer vision and image processing

• Methods to compute image information

• “Feature” means “interesting” part of an image

• 4 general types
• Edges

• Corners (Interest points)

• Blobs (Regions of interest points)

• Ridges

Edge Detection

• Detect parts where brightness
changes sharply

• Good in image processing, not
AR.

• Marker-based solutions could
still use this (searching for
specific image)

Corners

• An interest point where there is
an intersection of 2 edges.

• Ends of a parabola

• Markerless AR

Blobs

• General analysis of image

• Find regions that differ in
properties
• Brightness

• Color

• Smooth areas

• Markerless AR

Ridges

• For elongated objects

• 1D curves

• Harder to compute

• Road detection on aerial images

Object Placement

• Once the system understands the environment, it needs a way to
place objects:
• Marker-based

• Markerless

• Location based

Marker-Based

• Virtual object placed on a “marker”
• Detectable image

• Can only visualize one object per image

Marker-Based

Markerless

• Uses feature points to detect surfaces

• Generates planes with feature points (plane
detection)

• Objects placeable on planes.

• Only supports horizontal/vertical surfaces

• Doesn’t work with flat colored surfaces

Location based

• Uses real-world coordinates to estimate where to place objects
• Latitude, longitude, altitude

• Better for outdoors environments

• More advanced features currently only on iOS

What about point cloud based?

• Master thesis study – utilize AR on a lower level

• Detecting and saving feature points as point clouds

• Comparing point clouds and matching them

• Saved point cloud can have special object locations added to visualize
once point clouds matched.

Problem 1 – Persistent Data

• Feature points are deleted when no longer seen by a device

• A separate container to store all visible points

Problem 2 – Excessive Data

• Too many points are saved, causes
slowdown

• Check nearby points to see if a point
should be added?
• Would require traversing the entire

collection of points for each point 𝑂(𝑛)

• Octrees
• 3D cube dividing to a minimum size

• Only compare points within divided cube

• Finding time now 𝑂(log 𝑛)

Problem 3 – Saving Point Clouds

• A way to save and load point clouds in some form of data

• Each point is a 3D position

• Write the coordinates as a binary stream

Problem 4 – Comparing Point Clouds

• Many potential issues
• Individual points, not planes – lots of comparisons between points

• Tens of thousands of points per PC

• Unique number of points per PC

• Many points that can’t be directly matched with each other

• Inaccurately placed points (outliers)

• Coordinate systems of points clouds not matching

Point Set Registration

• Finding a spatial transformation that aligns two point clouds
• Scaling

• Rotation

• Translation

• 2 finite point sets in a finite-dimensional real vector space

Point Set Registration

• Finding a spatial transformation that aligns two point clouds

• Scaling

• Rotation

• Translation

• 2 finite point sets in a finite-dimensional real vector space

• Transformation types:
• Rigid Registration – 2 separate point clouds matched without the distance

between 2 points of a point cloud changing. Just translation and rotation of
the point clouds

• Non-Rigid Registration – allows non-linear transformation, scaling included

Point Set Registration

• One of the issues was point having deviations (outliers, different point
locations)

• Non-rigid should be the solution

• Algorithms that cover this area:
• SG4PCS

• 2PNS

• ACPD

Before That

• RANSAC – Random Sample Consensus.

• Picks 3 random points from either point cloud

• Computations to count points from one point cloud that are close to
points in other.

• If point count large enough, accepted as answer.
• Otherwise it repeats.

4-Point Congruent Sets (4PCS)

• “Fast”, robust alignment scheme for 3D point sets.

• Resilient to noise and outliers, even with small overlap

4-Point Congruent Sets (4PCS)

• 1. Uses coplanar sets of 4 point rather than minimum
of 3, to apply a technique to match pairs of affine
invariant ratios in 3D
• Coplanar – Same plane

• Affine – Preservation of lines and parallelism, but not
distance

• Invariant – Property that remains unchanged after
transformations

4-Point Congruent Sets (4PCS)

• 2. Select a base of 4 coplanar points in PC 𝑃

• Find all 4-point sets in target PC 𝑄, that are approximately congruent
with base points.

• Done in 𝑂(𝑛2 + 𝑘) time
• 𝑛 – Number of points in 𝑄

• 𝑘 – Number of 4-point sets.

4-Point Congruent Sets (4PCS)

• 3. For each 4-point set from 𝑄, compute aligning transformation 𝑇,
retain best transformation based on Largest Common Pointset score.

• Repeat in RANSAC scheme until good solution found or maximum
iterations reached.

• LCP problem
• Given 2 point sets 𝑃 and 𝑄, under 𝛿-congruence, Find largest countable

subset of 𝑃 called 𝑃′ where distance between 𝑇 𝑃′ and 𝑄 is less than 𝛿. 𝑇
being a rigid transform.

4-Point Congruent Sets (4PCS)

• 4. First step of each RANSAC iteration – pick a random
base of 4 coplanar points.

• Picks first 3 randomly to create a wide triangle.

• 4th selected is close to the planar of the other 3.

• Testing all 𝑆 point in 𝑃, picking the one that fits best

• Complexity 𝑂(𝑆)

4-Point Congruent Sets (4PCS)

• 5. ℬ = 𝐴, 𝐵, 𝐶, 𝐷 , where 𝐸 is intersection of 𝐴𝐵 and 𝐶𝐷

• 𝑟1 =
𝐴−𝐸

𝐴−𝐵
, 𝑟2 =

𝐶−𝐸

𝐶−𝐷

• 𝑑1 = 𝐴 − 𝐵 , 𝑑2 = 𝐶 − 𝐷

• Ratios 𝑟1 𝑎𝑛𝑑 𝑟2 remain invariant under affine
transformation, and therefore under rigid motion

• Distances preserved with rigid transformations – these 4
invariants used for searching congruent 4-point sets in 𝑄

4-Point Congruent Sets (4PCS)

• 𝑟1 =
𝐴−𝐸

𝐴−𝐵
, 𝑟2 =

𝐶−𝐸

𝐶−𝐷

• 𝑑1 = 𝐴 − 𝐵 , 𝑑2 = 𝐶 − 𝐷

• 6. Extract all pairs of points and distance 𝑑1 or 𝑑2 from 𝑄

• 𝑂(𝑁2) time
• 𝑁 – amount of points in 𝑄

• For each extracted pair 𝑄1, 𝑄2 ∈ 𝑄 with distances 𝑑1 or
𝑑2, compute intermediate points 𝐸1, 𝐸2

4-Point Congruent Sets (4PCS)

• For each extracted pair 𝑄1, 𝑄2 ∈ 𝑄 with distances 𝑑1 or 𝑑2,
compute intermediate points 𝐸1, 𝐸2

• 7. 2 pairs whose 𝐸1, 𝐸2 are coincident form a
4-point base related with ℬ by an affine
transformation

• Intermediate points from pairs at 𝑑1 used to
build an approximate range tree structure
• 𝑂 𝑀 log𝑀 , where 𝑀 is number of pairs
• Query time 𝑂(log𝑀 + 𝐾), where K is number of

points needed to get

4-Point Congruent Sets (4PCS)

• Intermediate points from pairs at 𝑑1 used to build an
approximate range tree structure

• 𝑂 𝑀 log𝑀 , where 𝑀 is number of pairs

• Query time 𝑂(log𝑀 + 𝐾), where K is number of points
needed to get

• 8. Intermediate points from pairs at 𝑑2
used to query the tree

• Result is K 4-point sets from pairs

• 𝑂 𝐾 time to remove non-rigid sets

Super 4-Point Congruent Sets (S4PCS)

• Improves certain search stages to decrease complexity from quadratic
to linear time.

• Supposedly works with about 25% overlap with 20% outlier margin.

• Complexity decreased to 𝑂 𝑁 +𝑀 +𝐾 by solving 2 bottlenecks
• Pair Extraction (2) - 𝑂(𝑁2 + 𝐾)

• Verification (8) - 𝑂(𝐾)

Super 4-Point Congruent Sets (S4PCS)

• First bottleneck

• 2. Select a base of 4 coplanar points in PC 𝑃

• Find all 4-point sets in target PC 𝑄, that are approximately congruent
with base points.

• Done in 𝑂(𝑛2 + 𝑘) time
• 𝑛 – Number of points in 𝑄

• 𝑘 – Number of 4-point sets.

Super 4-Point Congruent Sets (S4PCS)

• 2. Select a base of 4 coplanar points in PC 𝑃

• Find all 4-point sets in target PC 𝑄, that are approximately congruent with base
points.

• Now find points close to spheres centered in
𝑄𝑖 ∈ 𝑄 with radius 𝑑1 ± 𝜖 and 𝑑2 ± 𝜖, where
𝜖 is noise tolerance

• Pair extraction reduced to 𝑂(𝑛)

Super 4-Point Congruent Sets (S4PCS)

• Second bottleneck
• Intermediate points from pairs at 𝑑1 used to build an approximate range tree structure

• 𝑂 𝑀 log𝑀 , where 𝑀 is number of pairs

• Query time 𝑂(log𝑀 + 𝐾), where K is number of points needed to get

• 8. Intermediate points from pairs at 𝑑2 used to query the tree

• Result is K 4-point sets from pairs

• 𝑂 𝐾 time to remove non-rigid sets

Super 4-Point Congruent Sets (S4PCS)

• 𝑂 𝐾 time to remove non-rigid sets

• Now extract only congruent 4-point bases that are rigid-invariant, so
verification not needed.

• 4-point set congruent to base from 𝑃 if it’s composed of pairs with
correct length (𝑑1, 𝑑2) and angle 𝜙 between them similar to angle
formed by the 2 pairs in the base

Super 4-Point Congruent Sets (S4PCS)

• Represent each point by intermediate point 𝐸 and orientation.

• 𝑑1 pairs hashed by this position and orientation, mapped to a
spherical map.

• In query stage (7), get cells in a regular grid using 𝐸.

• Query sphere map using a 𝑑2 pair direction, find all pairs with angle 𝜙
in regards to query direction. A cone of aperture 2𝜙 is intersected
around the query direction.

• Complexity 𝑂(𝑀 + 𝐾)

Super 4-Point Congruent Sets (S4PCS)

Generalized 4-Point Congruent Sets (G4PCS)

• Alternate advancement of 4PCS

• Different definition of the 4-point base

• X = 𝐴, 𝐵, 𝐶, 𝐷 , where AB does NOT always
lie on same plane as CD

• 𝑟1 =
𝑎−𝑥

𝑎−𝑏
, 𝑟2 =

𝑐−𝑦

𝑐−𝑑

• 𝑑3 = 𝑥 − 𝑦

Generalized 4-Point Congruent Sets (G4PCS)

• Predefining values of 𝑑1, 𝑑2, 𝑑3 to sample
only bases that satisfy them.

• Any wide base now sampled from 𝑃, then 𝑑𝑖
• Bases storable in a 2D hash table based on

ratios 𝑟1, 𝑟2
• Should lessen the amount of bases found

Super Generalized 4PCS (SG4PCS)

• Combination of S4PCS and G4PCS

2 Point Normal Sets (2PNS)

• Alternative to S4PCS using a different approach to 3D registration

• Using normals instead

• Rigid transformation 𝑇 computable from 2 points plus normal of one
point

• Reduces needed comparisons

2 Point Normal Sets (2PNS)

• 1. Computing point normals

• PC surface normal estimation, PlanePCA?

• 2 solutions for each normal vector

• Fails when normals not estimated correctly
• Sparse PC

• Mostly sharp edges and corners

2 Point Normal Sets (2PNS)

• 2. 2PNS search to obtain existing matches

• Take 2 points and normals from source PC 𝑃

• Extracts pairs
• 𝑑 = 𝐴 − 𝐵

• 𝑎𝑛𝑔𝑙𝑒 𝜃 = ∠(𝓃𝐴, 𝓃𝐵)

• Verify 3 additional angles to prevent non-rigid
solutions

• Angles preserved under rigid transformation

2 Point Normal Sets (2PNS)

• 3. Estimation of R

• Let (𝐴′, 𝐵′) with normals 𝓃𝐴, 𝓃𝐵, be pair of points
in PC 𝑄, congruent with pair in 𝑃

• Estimate rigid transformation and compute their
rotation 𝑅 = R𝛼 ⋅ 𝑅𝛽
• 𝑅𝑎 aligns vectors

• 𝑅𝛽 aligns normal vectors

2 Point Normal Sets (2PNS)

• Estimate rigid transformation and compute their rotation 𝑅 = R𝛼 ⋅ 𝑅𝛽
• 𝑅𝑎 aligns vectors

• 𝑅𝛽 aligns normal vectors

• 𝑅𝛼 simple rotation to align 2 vectors
• 𝑣1 = 𝐵 − 𝐴, 𝑣2 = 𝐵′ − 𝐴′

• 𝜔𝛼 = 𝑣1 × 𝑣2
• 𝛼 = cos−1(𝑣1 ⋅ 𝑣2)

• 𝑅𝛽 found by rotating angle 𝛽 around axis 𝑣2
• 𝓃𝑃

∗ = 𝑅𝛼
• 𝓃𝑃 , 𝑃 = 𝐴, 𝐵

• 𝛽′ = 𝜋 − 𝛽

• Translation estimated from 𝑅

Coherent Point Drift (CPD)

• Probabilistic approach to align point sets.

• Consider problem as probability density
estimation problem, fit Gaussian Mixture Model
centroids by maximizing likelihood.

• Let 𝑋 𝑀×𝑑 = 𝑥1, 𝑥2, … , 𝑥𝑀
𝑇 be the template PC

and 𝑌𝑁×𝑑 = 𝑦1, 𝑦2, … , 𝑦𝑁
𝑇 the target PC

• 𝑑 – PC dimension (3)

• M and N – Amount of points in X and Y.

Coherent Point Drift (CPD)

• 𝑋 𝑀×𝑑 = 𝑥1, 𝑥2, … , 𝑥𝑀
𝑇 template PC

• 𝑌𝑁×𝑑 = 𝑦1, 𝑦2, … , 𝑦𝑁
𝑇 target PC

• Uses weighted GMM probability density function.
Noise or outliers accounted as

• 𝑝 𝑦 = 𝜔
1

𝑁
+ 1 − 𝜔 σ 𝑚=1

𝑀 1

𝑀
𝑝 𝑦 𝑚

• 𝑝 𝑦 𝑚 =
1

2𝜋𝜎2
𝑑
2

exp −
𝑦−𝑥𝑚

2

2𝜎2

• 𝜔 – Weight of uniform distance between 0 to 1.

• 𝜎 – Standard deviation

Coherent Point Drift (CPD)

• Next step – using expectation-maximization scheme (EM) to find final
3D rigid transformation.

• E-step (posterior probability of GMM)

• 𝑃 𝑖 𝑚 𝑦𝑛 =

exp −
1

2

𝑦𝑛−𝑇 𝑥𝑚,𝜙 𝑖

𝜎 𝑖

2

σ𝑘=1
𝑀 exp −

1

2

𝑦𝑛−𝑇 𝑥𝑚,𝜙 𝑖

𝜎 𝑖

2

+ 2𝜋 𝜎 𝑖 2
𝑑
2 𝜔

1−𝜔

𝑀

𝑁

• Calculate correspondence probability matrix
• 𝑃 = 𝑃 𝑚 𝑦𝑛 𝑀×𝑁

Coherent Point Drift (CPD)

• M-step, new parameter set calculated by maximizing auxiliary
function 𝑄 Θ, Θ 𝑖 , upper bound for log-likelihood function

• 𝐿 Θ = log(Π𝑛=1
𝑁 𝑝 𝑦𝑛 = σ𝑛=1

𝑁 logσ𝑚=1
𝑀+1 𝑃 𝑚 𝑝 𝑦𝑛 𝑚)

Accelerated Coherent Point Drift (ACPD)

• CPD suffers from high computational complexity / convergence to
local minima.

• ACPD offers 2 methods to speed up performance

Accelerated Coherent Point Drift (ACPD)

• 1. Speed up Expectation-Maximization
• gSQUAREM

• 2. Calculating probability matrix 𝑃 more efficiently
• DT-IFGT

• Reduces 𝑂 𝑀 ⋅ 𝑁 𝑡𝑜 𝑂(𝑀 + 𝑁)

