Augmented Reality and Point
Set Matching

Author: Karl - Walter Sillaots

What is Augmented Reality (AR)?

* Mixed interactive experience — real-world environment with
computer-generated information
* Visual
e Auditory
* Optionally, haptic, neural, smell

 System that fulfils 3 conditions:
e A combination of real and virtual worlds
e Real-time interaction
e Accurate 3D registration of virtual and real objects

Current Use Cases?

* Not used often in commercial products
* Furniture

* Visual aid

e “Augments” the environment

Devices

 Camera — to perceive the world and make decisions from it
* A computer with a camera
* Smart devices (phones, tablets)
* Head-Mounted Display

Virtual Reality or Augmented Reality?

* VR — The perception of reality is all based on virtual information

Virtual Reality or Augmented Reality?

* AR — Part of the environment is “real”, with virtual objects on top of it

Size: 375 x 375
mm

Augmented Reality History

1968

* Note - VR and AR didn’t exist at this point, only Artificial Reality

1968

 The Sword of Damocles
* Created by Ivan Sutherland

* 2 CRT screens for either eye

 Screens display 2D objects at
different angles

* Head position sensors

* Wireframe objects

1969

 Glowflow

* Myron Krueger

* Wanted Artificial Reality that didn’t
need goggles or gloves to interact

GLOWFLOW

* Dark room filled with
phosphorescent pigments

PHOSPHORESCENT
PIGMENTS IN

* Floor sensors reacted to movement, [t s
synthesizer sounds, origin, lighting

* Issues with trigger mechanisms

1970

* Metaplay

e 2 Rooms connected through a video
feed

e “Artist” sees others through
camera, can interact with a drawing
tablet

. _ W METAPLAY
* Participants saw themselves project corpuren|conrer COMMUNICATIONS

on media screen, on which the
artist can write and draw on

1971

* Psychic Space
* Advancement of Glowflow
* Improved sensor detection

* |Invisible maze, user location
displayed on screen with “wal
locations

I”

Participant —_— -ﬁ
1974 et Balle virtuelle I

.- - ::‘ .. . v
- Videoplace '
« 2 rooms where image of one side Sy
projected to other. Both T
participants see the same image o — T Vel
* More interactivity
* Playing with a virtual ball

* Changing their displayed image,
resizing, rotating

* Typing text
* Computer Vision

1990

* The term “Augmented Reality” was used for the first time
 Thomas Caudell (David Mizell)

* Developed an industrial AR head mounted display
* Displays computer-generated diagrams of the manufacturing process
* Branched off as industrial AR (supporting industrial work)

1992

* Virtual Fixtures
* Louis Rosenberg

* First fully functional AR system

* Displays and overlays virtual sensor
information

* 3D graphics slow at that time, uses 2
physical robots instead

* Binocular magnifiers aligned user view with
robot arms for better immersion

1994-1998

e Various entertainment use cases

* Sportsvision displaying a yellow line
in American Football games

* Individually displayed and updated for
every camera showing games

* Samples field / players for line
occlusion effects

1999

* NASA hybrid synthetic vision system for spacecraft

2000

* Open-source software library ARToolKit developed.
* Video tracking to overlay virtual graphics on top of it.

e Still being updated today

2001-2013

e 2003 — NFL usage of Skycam for virtual markers

e 2009 - Esquire Magazine with scannable barcodes to display AR
content

e 2013 — Volkswagen using AR as car manuals (MARTA)

2014,2016

* Google Glass, Microsoft Hololens

e More immersive alternatives to
smartphones

* Google Glass had a camera, touchpad,
voice commands.

* Hololens have an accelerometer,
gyroscope, magnetometer, depth-camera,
multiple microphones, light sensor.

The Future?

Feature Detection

Feature Detection

* A subcategory of computer vision and image processing
* Methods to compute image information
* “Feature” means “interesting” part of an image

* 4 general types
* Edges
e Corners (Interest points)
* Blobs (Regions of interest points)
* Ridges

Edge Detection

* Detect parts where brightness
changes sharply

* Good in image processing, not
AR.

 Marker-based solutions could
still use this (searching for
specific image)

Unrotated Camera Texture Intrinsics:
ocal Length: (1486.1, 1485.7)

ir

I

F
Pr
m
Unrotated Field of View: (65.72531°, 39.9486°)

ncipal Point:(968.9, 555.0)
e Din i

Dimensions: (1920, 1080)

ag

Unrotated Camera Image Intrinsics:
Focal Length: (495.4, 495.2)
Principal Point:(322.6, 244.7)
Dimensions: (640, 480)
nrotated Field of View: (65.72531°, 51.71119°)

corners

* An interest point where there is
an intersection of 2 edges.

* Ends of a parabola
* Markerless AR

Blobs

* General analysis of image e
. . . . O
* Find regions that differ in %
properties o .
* Brightness
e Color

e Smooth areas
* Markerless AR

Ridges

* For elongated objects
* 1D curves
* Harder to compute

* Road detection on aerial images

=

Thin line Edge detector Bdige filter

Object Placement

* Once the system understands the environment, it needs a way to
place objects:
* Marker-based
* Markerless
* Location based

Marker-Based

8 1 5V e FIETAEAT

* Virtual object placed on a “marker”
e Detectable image

* Can only visualize one object per image

Marker-Based

Markerless

* Uses feature points to detect surfaces

* Generates planes with feature points (plane
detection)

* Objects placeable on planes.
* Only supports horizontal/vertical surfaces
* Doesn’t work with flat colored surfaces

Location based

e Uses real-world coordinates to estimate where to place objects
 Latitude, longitude, altitude

 Better for outdoors environments
* More advanced features currently only on iOS

What about point cloud based?

* Master thesis study — utilize AR on a lower level
* Detecting and saving feature points as point clouds
* Comparing point clouds and matching them

* Saved point cloud can have special object locations added to visualize
once point clouds matched.

Problem 1 — Persistent Data

* Feature points are deleted when no longer seen by a device
* A separate container to store all visible points

Problem 2 — Excessive Data

* Too many points are saved, causes
slowdown

* Check nearby points to see if a point
should be added?

* Would require traversing the entire
collection of points for each point O (n)

; ,/“‘\ \ \
AN ANWAWA

* Octrees
* 3D cube dividing to a minimum size
* Only compare points within divided cube
* Finding time now O(logn)

Problem 3 — Saving Point Clouds

* A way to save and load point clouds in some form of data
e Each point is a 3D position
* Write the coordinates as a binary stream

Problem 4 — Comparing Point Clouds

* Many potential issues
* Individual points, not planes — lots of comparisons between points
* Tens of thousands of points per PC
* Unique number of points per PC
* Many points that can’t be directly matched with each other
Inaccurately placed points (outliers)
Coordinate systems of points clouds not matching

Point Set Registration

* Finding a spatial transformation that aligns two point clouds
* Scaling
* Rotation
* Translation

* 2 finite point sets in a finite-dimensional real vector space

Point Set Registration

* Finding a spatial transformation that aligns two point clouds
* Scaling
* Rotation
e Translation

» 2 finite point sets in a finite-dimensional real vector space

* Transformation types:

* Rigid Registration — 2 separate point clouds matched without the distance
between 2 points of a point cloud changing. Just translation and rotation of
the point clouds

* Non-Rigid Registration — allows non-linear transformation, scaling included

Point Set Registration

* One of the issues was point having deviations (outliers, different point
locations)

* Non-rigid should be the solution

* Algorithms that cover this area:
* SG4PCS
* 2PNS
* ACPD

Before That

e RANSAC — Random Sample Consensus.
* Picks 3 random points from either point cloud

* Computations to count points from one point cloud that are close to
points in other.

* If point count large enough, accepted as answer.
* Otherwise it repeats.

4-Point Congruent Sets (4PCS)

e “Fast”, robust alignment scheme for 3D point sets.
e Resilient to noise and outliers, even with small overlap

4-Point Congruent Sets (4PCS)

\
e 1. Uses coplanar sets of 4 point rather than minimum
of 3, to apply a technique to match pairs of affine
invariant ratios in 3D

* Coplanar —Same plane Afinelinvariant
* Affine — Preservation of lines and parallelism, but not
distance
* |nvariant — Property that remains unchanged after
transformations
/»/% /N‘/KSX
g By e

AABC = ADEF

4-Point Congruent Sets (4PCS)

e 2. Select a base of 4 coplanar points in PC P

* Find all 4-point sets in target PC Q, that are approximately congruent
with base points.

* Done in 0(n® + k) time
* n— Number of pointsin Q
e k — Number of 4-point sets.

4-Point Congruent Sets (4PCS)

* 3. For each 4-point set from Q, compute aligning transformation T,
retain best transformation based on Largest Common Pointset score.

e Repeat in RANSAC scheme until good solution found or maximum
iterations reached.

* LCP problem

e Given 2 point sets P and Q, under §-congruence, Find largest countable
subset of P called P’ where distance between T(P') and Q is less than 6. T
being a rigid transform.

4-Point Congruent Sets (4PCS)

* 4, First step of each RANSAC iteration — pick a random
base of 4 coplanar points.

* Picks first 3 randomly to create a wide triangle.

* 4th selected is close to the planar of the other 3.

* Testing all S point in P, picking the one that fits best
e Complexity O(S)

4-Point Congruent Sets (4PCS)

5.B={A,B,C,D}, where E is intersection of AB and CD

.y = |A-E|| _|lc-E|
L Jla-BI" 2 T Jic-D|
+dy = ||A-Bl|,d, = |IC - D||

* Ratios ry and r, remain invariant under affine
transformation, and therefore under rigid motion

* Distances preserved with rigid transformations — these 4
invariants used for searching congruent 4-point sets in Q

4-Point Congruent Sets (4PCS)

_ lla-el] - _ [lc-El|
L™)la-BI]”"2 7 |ic-pl|

© dy = ||A—B||;d2 = ||C—D||

* 6. Extract all pairs of points and distance d; or d, from Q
* O(N?) time

N —amount of pointsin Q

* For each extracted pair (Q, Q,) € Q with distances d, or , 4_ 0
d,, compute intermediate points E, E, |

4-Point Congruent Sets (4PCS)

* For each extracted pair (Q4, QIZ:) € Q with distances d, or d,,
compute intermediate points E, E,

* 7. 2 pairs whose E4, E, are coincident form a v N
4-point base related with B by an affine / 2
transformation ||y dmeB

* Intermediate points from pairs at d; used to
build an approximate range tree structure

 O(Mlog M), where M is number of pairs

* Query time O(log M + K), where K is number of
points needed to get

4-Point Congruent Sets (4PCS)

* Intermediate points from pairs at d, used to build an
approximate range tree structure

« O(MlogM), where M is number of pairs

* Query time O(logM + K), where K is number of points
needed to get

* 8. Intermediate points from pairs at d,
used to query the tree

* Result is K 4-point sets from pairs
* 0(K) time to remove non-rigid sets

Super 4-Point Congruent Sets (S4PCS)

* Improves certain search stages to decrease complexity from quadratic
to linear time.

e Supposedly works with about 25% overlap with 20% outlier margin.

» Complexity decreased to O(N + M + K) by solving 2 bottlenecks
e Pair Extraction (2) - O(N? + K)
* Verification (8) - O(K)

Super 4-Point Congruent Sets (S4PCS)

* First bottleneck
e 2. Select a base of 4 coplanar points in PC P

* Find all 4-point sets in target PC Q, that are approximately congruent
with base points.

* Done in O(n? + k) time
* n— Number of pointsin Q
e k — Number of 4-point sets.

Super 4-Point Congruent Sets (S4PCS)

* 2. Select a base of 4 coplanar points in PC P

* Find all 4-point sets in target PC @, that are approximately congruent with base
points.

* Now find points close to spheres centered in
Q; € Q with radius d; £ € and d, + €, where
€ is noise tolerance

* Pair extraction reduced to 0 (n)

Super 4-Point Congruent Sets (S4PCS)

 Second bottleneck

* Intermediate points from pairs at d; used to build an approximate range tree structure
« O(MlogM), where M is number of pairs
* Query time O(logM + K), where K is number of points needed to get

* 8. Intermediate points from pairs at d, used to query the tree
* Result is K 4-point sets from pairs
* 0(K) time to remove non-rigid sets

Super 4-Point Congruent Sets (S4PCS)

* 0O(K) time to remove non-rigid sets

* Now extract only congruent 4-point bases that are rigid-invariant, so
verification not needed.

e 4-point set congruent to base from P if it’'s composed of pairs with
correct length (d, d,) and angle ¢ between them similar to angle
formed by the 2 pairs in the base

Super 4-Point Congruent Sets (S4PCS)

* Represent each point by intermediate point E and orientation.

* d4 pairs hashed by this position and orientation, mapped to a
spherical map.

* In query stage (7), get cells in a regular grid using E.

* Query sphere map using a d, pair direction, find all pairs with angle ¢
in regards to query direction. A cone of aperture 2¢ is intersected
around the query direction.

* Complexity O(M + K)

Super 4-Point Congruent Sets (S4PCS)

O(S5) [SEIect random quadrilateral in]D]

l

[Compute distance ; (and angle between normals) for pair Zj

Compute distance d» (and angle between normals ;) for pair 2

O(N) Extract pairs with distance «; (and angle ;)
o Extract pairs with distance - (and angle #;)

l

QM+ K) [Fiﬂd congruent quadrilaterals j

|

For all extracted 4-point sets:
*Compute T from 3 matching points
*Compute LCP

Generalized 4-Point Congruent Sets (G4PCS)

e Alternate advancement of 4PCS

 Different definition of the 4-point base y /"
« X ={A,B,C,D}, where AB does NOT always d:, /,f”
lie on same plane as CD ,/’ Td'i
) S ik eb
< X —
oo llaxl] eyl of d.
L™ Na-bl]”"% " |lc=d||

*ds = |x—y||

Generalized 4-Point Congruent Sets (G4PCS)

* Predefining values of d4, d,, d; to sample

only bases that satisfy them. ’,."
* Any wide base now sampled from P, then d; d:. 4}”
* Bases storable in a 2D hash table based on ,/’ Td'i
ratios ry, 1, 2 e——p ob
’ —

e Should lessen the amount of bases found c:.'f d4

Super Generalized 4PCS (SG4PCS)

Algorithm 1 The Super Generalized 4PCS Algorithm

* Combination of S4PCS and G4PCS Input: Target and source point sets, P and Q

Output: Best transformation according to LCP, T}

I
2. Extract i, ds pairs from P

3. Extract d, , ds pairs from ¢

4

5. Compute all valid 3D intersections in ¢ and store in /f
i

dy = ds = [fractiomal _overlap x model_diameler

Imtialize a 41 hash table H to store intersecting pairs

I, = number of RANSAC 1lerations

g8 for!l =0to L do

1k
11:
12:
13:
14:
15:
16

7 = random base from #
i, Top, da g, g are invariants of B
C = ErtractCongruent(r) g, rop, dap, tg)
T'p = Transformation with highest LCP from O
if LOP(Thew) < LCP(Tg) then
Thest = T
end if
end for

2 Point Normal Sets (2PNS)

 Alternative to S4PCS using a different approach to 3D registration

e Using normals instead

* Rigid transformation T computable from 2 points plus normal of one
point

* Reduces needed comparisons

2 Point Normal Sets (2PNS)

e 1. Computing point normals
e PC surface normal estimation, PlanePCA?
e 2 solutions for each normal vector

* Fails when normals not estimated correctly

* Sparse PC
* Mostly sharp edges and corners

2 Point Normal Sets (2PNS)

* 2. 2PNS search to obtain existing matches y y ‘,mg
» Take 2 points and normals from source PC P o A
* Extracts pairs X B
- d=||A-B||
* \erify 3 additional angles to prevent non-rigid 0 ’
solutions

* Angles preserved under rigid transformation

2 Point Normal Sets (2PNS)

* 3. Estimation of R g\,\ l ‘,:mj
* Let (A’, B") with normals 74, 75, be pair of points ‘ A
in PC Q, congruent with pair in P /B B
* Estimate rigid transformation and compute their)
rotation R = R, - R.B A\f

* R, aligns vectors
* Rg aligns normal vectors

2 Point Normal Sets (2PNS)

* Estimate rigid transformation and compute their rotation R = R, - Rg (A;‘,/“A //\l%\f\)
R Y Ve

* R, simple rotation to align 2 vectors)
e v, =B—Av,=B —A N ...

* Rp found by rotating angle around axis v, -1y

e B =1 —

 Translation estimated from R

Coherent Point Drift (CPD)

* Probabilistic approach to align point sets.

* Consider problem as probability density

estimation problem, fit Gaussian Mixture Model
centroids by maximizing likelihood.

* Let X(yxay = (X1, X3, ..., xp)" be the template PC

and Yiyxa} = V1, Y2, ., ¥n)' the target PC
 d — PCdimension (3)

* M and N — Amount of pointsin Xand Y.

P mo
s aeaex!&*ﬁen *"szeaa Q

Coherent Point Drift (CPD)

* Ximxay = (X1, %2, ..., xp)" template PC
* Yinxay = V1, Y2, -, yn)' target PC

e Uses weighted GMM probability density function.
Noise or outliers accounted as

cp() = wr+ A=) Tihoyy—-p(Im)

2
* p(ylm) = (- d) exp (‘ (—“y;?;” >>
(2mo?)2 é

* w — Weight of uniform distance between O to 1. o
e o — Standard deviation ¢

o !
h** (?"00 ax

&

e %
** w a&%&m RG;@ ©8

Coherent Point Drift (CPD)

* Next step — using expectation-maximization scheme (EM) to find final

3D rigid transformation.
Y|
exp(—% J/n—T(Xm,Cb))
a
2

(D
yn—T(x ,(l)(i) .
Y exp(“% - (m) >+(2n(0(1))2) 1f)w1\1\/11

Q)
* Calculate correspondence probability matrix
* P = [P(m|yn)]mxn

 E-step (posterior probability of GMM)

+ PO(mly,) =

2

Coherent Point Drift (CPD)

* M-step, new parameter set calculated by maximizing auxiliary
function Q(@, (-9(‘)), upper bound for log-likelihood function

* L(0) = log(MY_; (p(yn)) = XN_;log XM*1 P(m)p(y,|m)

Accelerated Coherent Point Drift (ACPD)

» CPD suffers from high computational complexity / convergence to
local minima.

* ACPD offers 2 methods to speed up performance

Accelerated Coherent Point Drift (ACPD)

A
* 1. Speed up Expectation-Maximization

* gSQUAREM

e 2. Calculating probability matrix P more efficiently
* DT-IFGT
* Reduces O(M - N)to O(M + N)

nnnnnnnn

