

Computer Graphics Seminar

MTAT.03.305

Fall 2020

Raimond Tunnel

Computer Graphics

- Graphical illusion via the computer
- Displaying something meaningful (incl art)

Math

- Computers are good at... computing.
- To do computer graphics, we need math for the computer to compute.
- Geometry, algebra, calculus.

Math

- For creating and manipulating 3D objects we use:
 - Analytic geometry math about coordinate systems
 - Linear algebra math about vectors and spaces

Skills for Computer Graphics

Mathematical understanding

• Geometrical (spatial) thinking

• Programming

GLuint vaoHandle;

glGenVertexArrays(1, &vaoHandle);

glBindVertexArray(vaoHandle);

Visual creativity & aesthetics

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

The Standard Graphics Pipeline

Point

- Simplest geometry primitive
- In homogeneous coordinates:

(x, y, z, 1)

 $(x, y, z, w), w \neq 0$

- Represents a point (x/w, y/w, z/w)
- Usually you can put **w = 1 for points**
- Actual division will be done by GPU later

Line (segment)

- Consists of:
 - 2 endpoints
 - Infinite number of points between
- Defined by the endpoints

Interpolated and rasterized in the GPU

Line (segment)

- Consists of:
 - 2 endpoints
 - Infinite number of points between
- Defined by the endpoints

• Interpolated and rasterized in the GPU

Line (segment)

- Consists of:
 - 2 endpoints
 - Infinite number of points between
- Defined by the endpoints

Interpolated and rasterized in the GPU

Triangle

- Consists of:
 - 3 points called vertices
 - 3 lines called edges
 - 1 face
- Defined by 3 vertices

- Face interpolated and rasterized in the GPU
- Counter-clockwise order defines the front face

Triangle

- Consists of:
 - 3 points called vertices
 - 3 lines called edges
 - 1 face
- Defined by 3 vertices

- Face interpolated and rasterized in the GPU
- Counter-clockwise order defines the front face

Why triangles?

- They are in many ways the simplest polygons
 - 3 different points always form a plane
 - Easy to rasterize (fill the face with pixels)
 - Every other polygon can be converted to triangles

Why triangles?

- They are in many ways the simplest polygons
 - 3 different points always form a plane
 - Easy to rasterize (fill the face with pixels)
 - Every other polygon can be converted to triangles
- OpenGL used to support other polygons too
 - Must have been:
 - **Simple** No edges intersect each other
 - Convex All points between any two inner points are inner points

Examples of polygons

OpenGL < 3.1 primitives

OpenGL Programming Guide 7th edition, p49

After OpenGL 3.1

Table 3.1	OpenGL	Primitive	Mode	Tokens
-----------	--------	-----------	------	--------

Primitive Type	OpenGL Token		
Points	GL_POINTS		
Lines	GL_LINES		
Line Strips	GL_LINE_STRIP		
Line Loops	GL_LINE_LOOP		
Independent Triangles	GL_TRIANGLES		
Triangle Strips	GL_TRIANGLE_STRIP		
Triangle Fans	GL_TRIANGLE_FAN		

Figure 3.1 Vertex layout for a triangle strip

Figure 3.2 Vertex layout for a triangle fan

OpenGL Programming Guide 8th edition, p89-90

In the beginning there were points

• We can now define our geometric objects!

In the beginning there were points

- We can now define our geometric objects!
- We want to move our objects!

- Linear transformations
 - Scaling, reflection
 - Rotation
 - Shearing
- Affine transformations
 - Translation (moving / shifting)
- Projection transformations
 - Perspective
 - Orthographic

Homogeneous coordinates are needed here...

...and for the perspective projection

- Every transformation is a function
- As you have learned from algebra, all linear functions can be represented as matrices

$$f(v) = \begin{pmatrix} 2 \cdot x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$v \in R^{3}$$

$$v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

2

Column-major format

- Every transformation is a function
- As you have learned from algebra, all linear functions can be represented as matrices

$$f(v) = \begin{pmatrix} 2 \cdot x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

 $v \in R^{3}$ $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Linear function, which increases the first coordinate two times.

Column-major format

- Every transformation is a function
- As you have learned from algebra, all linear functions can be represented as matrices

$$f(v) = \begin{pmatrix} 2 \cdot x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{cases} x \\ y \\ z \end{pmatrix}$$
Same function as a matrix

$$v \in R^{3}$$
$$v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

_ 3

Column-major format

GPU-s are built for doing transformations with

matrices on points (vertices).

• GPU-s are built for doing transformations with matrices on points (vertices).

• Linear transformations satisfy:

$$f(a_1x_1 + ... + a_nx_n) = a_1f(x_1) + ... + a_nf(x_n)$$

We will not use homogeneous coordinates at the moment, but they will be back...

Linear Transformation

Scale

Scaling

• Multiplies the coordinates by a scalar factor.

Scaling

- Multiplies the coordinates by a scalar factor.
- Scales the standard basis vectors / axes.

Scaling

In general we could scale each axis

$$\begin{bmatrix} a_x & 0 & 0 \\ 0 & a_y & 0 \\ 0 & 0 & a_z \end{bmatrix}$$

$$\begin{array}{c} a_x - x \text{-axis scale factor} \\ a_y - y \text{-axis scale factor} \\ a_z - z \text{-axis scale factor} \end{array}$$

• If some factor is negative, this matrix will reflect the points from that axis. Thus we get reflection.

What happens to out triangles when an odd number of factors are negative?

Linear Transformation

Shear

Shearing

 $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ v \end{pmatrix}$

- Remember it for translations later.
- Tilts only one axis.
- Squares become parallelograms.

Shearing

 Shear-y, we tilt parallel to y-axis by angle φ counter-clockwise

$$\begin{pmatrix} 1 & 0 \\ \tan(\varphi) & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y + \tan(\varphi) \cdot x \end{pmatrix}$$

е_о

е,

0.5

 Shear-x, we tilt parallel to x-axis by angle φ clockwise

$$\begin{pmatrix} 1 & \tan(\varphi) \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + \tan(\varphi) \cdot y \\ y \end{pmatrix}$$

Linear Transformation

Rotation

Rotation

- Shearing moved only one axis
- Also changed the size of the basis vector
- Can we do better?

Did you notice that the columns of the transformation matrix show the coordinates of the new basis vectors?

Rotation

 So if we rotate by α in counter-clockwise order in 2D, the transformation matrix is:

In 3D we can do rotations in each plane (xy, xz, yz), so there can be 3 different matrices.

Rotation

- To do a rotation around an arbitrary axis, we can:
 - Rotate that axis to be the x-axis
 - Rotate around the new x-axis
 - Invert the first rotations (move the old x-axis back)

$$\left(\begin{array}{cccccc}
1 & 0 & 0 & 0\\
0 & \cos(\alpha) & -\sin(\alpha) & 0\\
0 & \sin(\alpha) & \cos(\alpha) & 0\\
0 & 0 & 0 & 1
\end{array}\right)$$

- OpenGL provides a command for rotating around a given axis.
- Generally quaternions are used for rotations. Quaternions are elements of a number system that extend the complex numbers...

Do we have everything now?

• We can scale, shear and rotate our geometry around the origin...

gin?

What if we have an object not centered in the origin?

Affine Transformation

Translation

 Imagine that a 1D world is located at y=1 line in 2D space.

• Notice that all the points are in the form: (x, 1)

 Imagine that a 1D world is located at y=1 line in 2D space.

• Notice that all the points are in the form: (x, 1)

 $\tan(45^\circ) = 1$

• Do a shear-x(45°) operation on the 2D world!

• Everything has now moved 1 unit in x to the right from the original position.

 $\tan(45^\circ) = 1$ $\tan(63.4^\circ) = 2$

• What if we do shear-x(63.4°)?

We can do translation (movement)!

 When we represent our points in one dimension higher space, where the extra coordinate is 1, we get to the homogeneous space.

$$\begin{pmatrix} 1 & x_t \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} x + x_t \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & x_t \\ 0 & 1 & 0 & y_t \\ 0 & 0 & 1 & z_t \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x + x_t \\ y + y_t \\ z + z_t \\ 1 \end{pmatrix}$$

Transformations

• This together gives us a very good **toolset** to transform our geometry as we wish.

- Everything starts from the origin!
- To apply multiple transformations, just multiply matrices.

Our initial geometry defined by vertices: (-1, -1), (1, -1), (1, 1), (-1, 1)

• Combine the transformations to a single matrix.

$$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(45^\circ) & -\sin(45^\circ) & 0 \\ \sin(45^\circ) & \cos(45^\circ) & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(45^\circ) & -\sin(45^\circ) & 4 \\ \sin(45^\circ) & \cos(45^\circ) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- This works for combining different affine transformations, but the result is hard to read...
- Order of transformations / matrices is important!
- http://cgdemos.tume-maailm.pri.ee

Now You Know

Next time...

- What is color in computer graphics?
- How to color our rasterized pixels?
- Light calculations.

