
Computer Graphics Seminar
MTAT.03.305

Fall 2020

Raimond Tunnel

Computer Graphics
● Graphical illusion via the computer

● Displaying something meaningful (incl art)

Math

● Computers are good at... computing.
● To do computer graphics, we need math for the

computer to compute.
● Geometry, algebra, calculus.

● For creating and manipulating 3D objects we use:
● Analytic geometry – math about coordinate systems
● Linear algebra – math about vectors and spaces

Math

Skills for Computer Graphics

● Mathematical understanding

● Geometrical (spatial) thinking

● Programming

● Visual creativity & aesthetics

(a b
c d)⋅(xy)=(ax+bycx+dy)

GLuint vaoHandle;

glGenVertexArrays(1, &vaoHandle);

glBindVertexArray(vaoHandle);

The Standard Graphics Pipeline
Define geometry and transformations

Apply geometry and transformations
Vertex

transformations

Culling & Clipping

Rasterization

Fragment shading

Visibility tests &
Blending

Data

Vertex shader

Point

● Simplest geometry primitive
● In homogeneous coordinates:

(x, y, z, w), w ≠ 0

● Represents a point (x/w, y/w, z/w)
● Usually you can put w = 1 for points
● Actual division will be done by GPU later

(x, y, z, 1)

Line (segment)
● Consists of:

● 2 endpoints
● Infinite number of points between

● Defined by the endpoints

● Interpolated and rasterized in the GPU

(x
1
, y

1
, z

1
, 1)

Line (segment)
● Consists of:

● 2 endpoints
● Infinite number of points between

● Defined by the endpoints

● Interpolated and rasterized in the GPU

(x
1
, y

1
, z

1
, 1)

Line (segment)
● Consists of:

● 2 endpoints
● Infinite number of points between

● Defined by the endpoints

● Interpolated and rasterized in the GPU

(x
1
, y

1
, z

1
, 1)

Triangle

● Consists of:
● 3 points called vertices
● 3 lines called edges
● 1 face

● Defined by 3 vertices

● Face interpolated and rasterized in the GPU

● Counter-clockwise order defines the front face

Triangle

● Consists of:
● 3 points called vertices
● 3 lines called edges
● 1 face

● Defined by 3 vertices

● Face interpolated and rasterized in the GPU

● Counter-clockwise order defines the front face

Front face

Why triangles?
● They are in many ways the simplest polygons

● 3 different points always form a plane
● Easy to rasterize (fill the face with pixels)
● Every other polygon can be converted to triangles

Why triangles?
● They are in many ways the simplest polygons

● 3 different points always form a plane
● Easy to rasterize (fill the face with pixels)
● Every other polygon can be converted to triangles

● OpenGL used to support other polygons too
● Must have been:

– Simple – No edges intersect each other

– Convex – All points between any two inner points are inner points

Examples of polygons

A

B

C

D

A

B C
D

E

F

G

H
I

J

K

L

F

A B

C

D E
C

A

B

OpenGL < 3.1 primitives

OpenGL Programming Guide 7th edition, p49

After OpenGL 3.1

OpenGL Programming Guide 8th edition, p89-90

In the beginning there were points

● We can now define our geometric objects!

World's (0, 0, 0)

In the beginning there were points

● We can now define our geometric objects!
● We want to move our objects!

Transformations
● Linear transformations

● Scaling, reflection
● Rotation
● Shearing

● Affine transformations
● Translation (moving / shifting)

● Projection transformations
● Perspective
● Orthographic

Homogeneous
coordinates are
needed here...

...and for the
perspective projection

Transformations

● Every transformation is a function
● As you have learned from algebra, all linear

functions can be represented as matrices

f (v)=(
2⋅x
y
z)=(

2 0 0
0 1 0
0 0 1)⋅(

x
y
z)

v∈R3

v=(
x
y
z)

Column-major format

Transformations

● Every transformation is a function
● As you have learned from algebra, all linear

functions can be represented as matrices

f (v)=(
2⋅x
y
z)=(

2 0 0
0 1 0
0 0 1)⋅(

x
y
z)

v∈R3

v=(
x
y
z)

Column-major formatLinear function, which increases the
first coordinate two times.

Transformations

● Every transformation is a function
● As you have learned from algebra, all linear

functions can be represented as matrices

f (v)=(
2⋅x
y
z)=(

2 0 0
0 1 0
0 0 1)⋅(

x
y
z)

v∈R3

v=(
x
y
z)

Column-major formatSame function
as a matrix

Transformations

● GPU-s are built for doing transformations with

matrices on points (vertices).

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control
Cache

Control
Cache

Control
Cache

Control
Cache

Control
Cache

Control
Cache

Control
Cache

DRAM

...

...

...

...

...

...

...

M⋅v0

M⋅v1

M⋅v2

Vertex shader
code

Transformations

● GPU-s are built for doing transformations with

matrices on points (vertices).

● Linear transformations satisfy:

f (a1 x1+ ...+ an xn)=a1 f (x1)+ ...+ an f (xn)

We will not use homogeneous coordinates at the moment, but they will be back...

Linear Transformation

Scale

Scaling
● Multiplies the coordinates by a scalar factor.

(2 0
0 1)⋅(xy) (2 0

0 1)⋅(1.5
1.5)=(3

1.5)

Scaling
● Multiplies the coordinates by a scalar factor.
● Scales the standard basis vectors / axes.

(2 0
0 1)⋅(1

0)=(2
0)=e0 (2 0

0 1)⋅(0
1)=(0

1)=e1

Scaling

● In general we could scale each axis

(
a x 0 0
0 a y 0
0 0 a z)

a
x
 – x-axis scale factor

a
y
 – y-axis scale factor

a
z
 – z-axis scale factor

● If some factor is negative, this matrix will reflect
the points from that axis. Thus we get reflection.

What happens to out triangles when an
odd number of factors are negative?

Linear Transformation

Shear

Shearing
● Remember it for translations later.
● Tilts only one axis.
● Squares become parallelograms.

(1 0
1 1)⋅(xy)

(1 0
1 1)⋅(1

2)=(1
3)

(1 0
1 1)⋅(0

2)=(0
2)

● Shear-y, we tilt parallel to y-axis
by angle φ counter-clockwise

● Shear-x, we tilt parallel to x-axis
by angle φ clockwise

(1 0
tan (ϕ) 1)⋅(xy)=(x

y+ tan (ϕ)⋅x)

(1 tan (ϕ)

0 1)⋅(xy)=(x+ tan (ϕ)⋅y
y)

Shearing

Linear Transformation

Rotation

Rotation

● Shearing moved only one axis
● Also changed the size of the basis vector
● Can we do better?

Did you notice that the columns of the
transformation matrix show the
coordinates of the new basis vectors?

Rotation

e '0=(∣a∣,∣b∣)=(cos(α) ,sin (α))

e '1=(∣a '∣,∣b '∣)=(−sin(α) ,cos(α))
cos(α)=

∣a∣
∣e '0∣

=
∣a∣
1

=∣a∣

Rotation

● So if we rotate by α in counter-clockwise order
in 2D, the transformation matrix is:

(cos(α) −sin(α)

sin(α) cos(α))

e'
0

e'
1

● In 3D we can do rotations in each plane (xy, xz,
yz), so there can be 3 different matrices.

Rotation
● To do a rotation around an arbitrary axis, we

can:
● Rotate that axis to be the x-axis
● Rotate around the new x-axis
● Invert the first rotations

(move the old x-axis back)

● OpenGL provides a command for rotating
around a given axis.

● Generally quaternions are used for rotations.

(
1 0 0 0
0 cos(α) −sin (α) 0
0 sin (α) cos(α) 0
0 0 0 1

)

Quaternions are elements of a number system that extend the complex numbers...

https://www.youtube.com/watch?v=d4EgbgTm0Bg

Do we have everything now?

● We can scale, shear and rotate our geometry
around the origin...

What if we have an object not centered in the origin?

Affine Transformation

Translation

Translation
● Imagine that a 1D world is located at y=1 line in

2D space.

● Notice that all the points are in the form: (x, 1)

Translation
● Imagine that a 1D world is located at y=1 line in

2D space.

The 1D world
Objects

● Notice that all the points are in the form: (x, 1)

Translation

● Do a shear-x(45°) operation on the 2D world!

tan(45°) = 1

● Everything has now moved 1 unit in x to the
right from the original position.

Translation

● What if we do shear-x(63.4°)?

tan(45°) = 1

● We can do translation (movement)!

tan(63.4°) = 2

Translation
● When we represent our points in one dimension

higher space, where the extra coordinate is 1,
we get to the homogeneous space.

(1 xt
0 1)⋅(x1)=(x+ xt1)

(
1 0 x t
0 1 y t
0 0 1)⋅(

x
y
1)=(

x+ x t
y+ yt

1) (
1 0 0 x t
0 1 0 y t
0 0 1 z t
0 0 0 1

)⋅(
x
y
z
1
)=(

x+ x t
y+ yt
z+ z t

1
)

Transformations
● This together gives us a very good toolset to

transform our geometry as we wish.

(
a b c xt
d e f yt
g h i z t
0 0 0 1

)⋅(
x
y
z
1
)=(

ax+ by+ cz+ x t
dx+ ey+ fz+ yt
gx+ hy+ iz+ z t

1
)

Used for perspective projection...

Translation columnLinear transformations

Augmented

trasnformation

matrix!

Multiple transformations

● Everything starts from the origin!
● To apply multiple transformations, just multiply

matrices.

Multiple transformations

Our initial geometry defined by vertices: (-1, -1), (1, -1), (1, 1), (-1, 1)

Multiple transformations

(
cos(45°) −sin (45°) 0
sin (45°) cos(45°) 0

0 0 1)

Multiple transformations

(
1 0 4
0 1 0
0 0 1)

Multiple transformations

● Combine the transformations to a single matrix.

(
1 0 4
0 1 0
0 0 1)⋅(

cos(45°) −sin(45°) 0
sin (45°) cos(45°) 0

0 0 1)=(
cos(45°) −sin (45°) 4
sin(45°) cos(45°) 0

0 0 1)
● This works for combining different affine transfor-

mations, but the result is hard to read...
● Order of transformations / matrices is important!
● http://cgdemos.tume-maailm.pri.ee

http://cgdemos.tume-maailm.pri.ee/

Now You Know

Vertex
transformations

Culling & Clipping

Rasterization

Fragment shading

Visibility tests &
Blending

Data M=M 1⋅M 2⋅M 3⋅...
v0

v 2

v1

P⋅V⋅M⋅v

v1v0

v 2

v1 v0

v 2

vs

(vxvw ,
v y
vw
,
v z
vw)v1v0

v 2

Vertex shader

Next time...

● What is color in computer graphics?
● How to color our rasterized pixels?
● Light calculations.

Fragment shader

Rasterization

Fragment shading

Visibility tests &
Blending

	Slaid 1
	Slaid 2
	Slaid 3
	Slaid 4
	Slaid 5
	Slaid 6
	Slaid 7
	Slaid 8
	Slaid 9
	Slaid 10
	Slaid 11
	Slaid 12
	Slaid 13
	Slaid 14
	Slaid 15
	Slaid 16
	Slaid 17
	Slaid 18
	Slaid 19
	Slaid 20
	Slaid 21
	Slaid 22
	Slaid 23
	Slaid 24
	Slaid 25
	Slaid 26
	Slaid 27
	Slaid 28
	Slaid 29
	Slaid 30
	Slaid 31
	Slaid 32
	Slaid 33
	Slaid 34
	Slaid 35
	Slaid 36
	Slaid 37
	Slaid 38
	Slaid 39
	Slaid 40
	Slaid 41
	Slaid 42
	Slaid 43
	Slaid 44
	Slaid 45
	Slaid 46
	Slaid 47
	Slaid 48
	Slaid 49
	Slaid 50
	Slaid 51
	Slaid 52

