Computer Graphics Seminar

MTAT.03.305
Fall 2020

Raimond Tunnel

UNIVERSITY of TARTU
Institute of Computer Science

Computer Graphics

- Graphical illusion via the computer
- Displaying something meaningful (incl art) THE THIRTEEITTH FLODR

Math

- Computers are good at... computing.
- To do computer graphics, we need math for the computer to compute.
- Geometry, algebra, calculus.

$$
\left[\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y+c z+d \\
e x+f y+g z+h \\
i x+j y+k z+l \\
1
\end{array}\right]
$$

Math

- For creating and manipulating 3D objects we use:
- Analytic geometry - math about coordinate systems
- Linear algebra - math about vectors and spaces

Skills for Computer Graphics

- Mathematical understanding $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot\binom{x}{y}=\binom{a x+b y}{c x+d y}$
- Geometrical (spatial) thinking
- Programming GLuint vaoHandle;

glGenVertexArrays(1, \&vaoHandle); glBindVertexArray(vaoHandle);
- Visual creativity \& aesthetics

The Standard Graphics Pipeline

Point

- Simplest geometry primitive
- In homogeneous coordinates:

$$
(x, y, z, w), w \neq 0
$$

- Represents a point (x/w, y/w, z/w)
- Usually you can put w=1 for points
- Actual division will be done by GPU later

Line (segment)

- Consists of:
- 2 endpoints
- Infinite number of points between
- Defined by the endpoints

- Interpolated and rasterized in the GPU

Line (segment)

- Consists of:
- 2 endpoints
- Infinite number of points between
- Defined by the endpoints

- Interpolated and rasterized in the GPU

Line (segment)

- Consists of:
- 2 endpoints
- Infinite number of points between
- Defined by the endpoints

$$
\left(x_{1}, y_{1}, z_{1}, 1\right)
$$

- Interpolated and rasterized in the GPU

Triangle

- Consists of:
- 3 points called vertices
- 3 lines called edges
- 1 face
- Defined by 3 vertices

- Face interpolated and rasterized in the GPU
- Counter-clockwise order defines the front face

Triangle

- Consists of:
- 3 points called vertices
- 3 lines called edges
- 1 face
- Defined by 3 vertices

- Face interpolated and rasterized in the GPU
- Counter-clockwise order defines the front face

Why triangles?

- They are in many ways the simplest polygons
- 3 different points always form a plane
- Easy to rasterize (fill the face with pixels)
- Every other polygon can be converted to triangles

Why triangles?

- They are in many ways the simplest polygons
- 3 different points always form a plane
- Easy to rasterize (fill the face with pixels)
- Every other polygon can be converted to triangles
- OpenGL used to support other polygons too
- Must have been:
- Simple - No edges intersect each other
- Convex - All points between any two inner points are inner points

Examples of polygons

OpenGL < 3.1 primitives

| $\mathrm{V}_{0} \bullet$ | $\mathrm{~V}_{2} \bullet$ | $\mathrm{~V}_{4} \bullet$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{~V}_{1} \bullet$ | $\mathrm{~V}_{3} \bullet$ | $\mathrm{~V}_{5} \bullet$ |
| | | |
| GL_POINTS | | |

Figure 2-7 Geometric Primitive Types

OpenGL Programming Guide $7^{\text {th }}$ edition, p 49

After OpenGL 3.1

Table 3.1 OpenGL Primitive Mode Tokens

Primitive Type	OpenGL Token
Points	GL_POINTS
Lines	GL_LINES
Line Strips	GL_LINE_STRIP
Line Loops	GL_LINE_LOOP
Independent Triangles	GL_TRIANGLES
Triangle Strips	GL_TRIANGLE_STRIP
Triangle Fans	GL_TRIANGLE_FAN

FIgure 3.2 Vertex layout for a triangle fan

FIgure 3.1 Vertex layout for a triangle strip

In the beginning there were points

- We can now define our geometric objects!

In the beginning there were points

- We can now define our geometric objects!
- We want to move our objects!

World's ($0,0,0$)

Transformations

- Linear transformations
- Scaling, reflection
- Rotation
- Shearing
- Affine transformations
- Translation (moving / shifting)

Homogeneous coordinates are needed here...

- Projection transformations
- Perspective
- Orthographic

...and for the
perspective projection

Transformations

- Every transformation is a function
- As you have learned from algebra, all linear functions can be represented as matrices

$$
\left.f(v)=\left(\begin{array}{c}
2 \cdot x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \quad v \in R^{3} \begin{array}{c}
x \\
y \\
z
\end{array}\right)
$$

Transformations

- Every transformation is a function
- As you have learned from algebra, all linear functions can be represented as matrices

$$
f(v)=\left(\begin{array}{c}
2 \cdot x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)
$$

$$
\begin{gathered}
v \in R^{3} \\
v=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{gathered}
$$

Linear function, which increases the

Transformations

- Every transformation is a function
- As you have learned from algebra, all linear functions can be represented as matrices

$$
\left.f(v)=\left(\begin{array}{c}
2 \cdot x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \quad v \in R^{3}, \begin{array}{c}
x \\
y \\
z
\end{array}\right)
$$

Transformations

- GPU-s are built for doing transformations with matrices on points (vertices).

$M \cdot v_{0}$	Control	ALU	ALU	ALU	ALU	...
	$\begin{array}{\|l\|l\|} \hline \text { Control } \\ \hline \text { Cache } \\ \hline \end{array}$	ALU	ALU	ALU	ALU	...
$M \cdot v_{1}$	Control Cache	ALU	ALU	ALU	ALU	...
$M \cdot v_{2}$	Control	ALU	ALU	ALU	ALU	...
Vertex shader code	$\begin{array}{\|c\|} \hline \text { Control } \\ \hline \text { Cache } \\ \hline \end{array}$	ALU	ALU	ALU	ALU	...
	$\begin{array}{\|c\|} \hline \text { Control } \\ \hline \text { Cache } \\ \hline \end{array}$	ALU	ALU	ALU	ALU	...
	$\begin{array}{\|c} \hline \text { Control } \\ \hline \text { Cache } \\ \hline \end{array}$	ALU	ALU	ALU	ALU	...

Transformations

- GPU-s are built for doing transformations with matrices on points (vertices).
- Linear transformations satisfy:

$$
f\left(a_{1} x_{1}+\ldots+a_{n} x_{n}\right)=a_{1} f\left(x_{1}\right)+\ldots+a_{n} f\left(x_{n}\right)
$$

We will not use homogeneous coordinates at the moment, but they will be back...

Linear Transformation

Scale

Scaling

- Multiplies the coordinates by a scalar factor.

Scaling

- Multiplies the coordinates by a scalar factor.
- Scales the standard basis vectors / axes.

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \cdot\binom{1}{0}=\binom{2}{0}=e_{0} \quad\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \cdot\binom{0}{1}=\binom{0}{1}=e_{1}
$$

Scaling

- In general we could scale each axis
\(\left(\begin{array}{ccc}a_{x} \& 0 \& 0

0 \& a_{y} \& 0

0 \& 0 \& a_{z}\end{array}\right) \quad\)| $a_{x}-\mathrm{x}$-axis scale factor |
| :--- |
| $a_{y}-\mathrm{y}$-axis scale factor |
| $a_{z}-\mathrm{z}$-axis scale factor |

- If some factor is negative, this matrix will reflect the points from that axis. Thus we get reflection.

Linear Transformation

Shear

Shearing

- Remember it for translations later.
- Tilts only one axis.

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \cdot\binom{x}{y}
$$

- Squares become parallelograms.

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \cdot\binom{0}{2}=\binom{0}{2} \\
& \left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \cdot\binom{1}{2}=\binom{1}{3}
\end{aligned}
$$

Shearing

- Shear-y, we tilt parallel to y-axis by angle φ counter-clockwise

$$
\left(\begin{array}{cc}
1 & 0 \\
\tan (\varphi) & 1
\end{array}\right) \cdot\binom{x}{y}=\binom{x}{y+\tan (\varphi) \cdot x}
$$

- Shear-x, we tilt parallel to x-axis by angle φ clockwise

$$
\left(\begin{array}{cc}
1 & \tan (\varphi) \\
0 & 1
\end{array}\right) \cdot\binom{x}{y}=\binom{x+\tan (\varphi) \cdot y}{y}
$$

Linear Transformation

Rotation

Rotation

- Shearing moved only one axis
- Also changed the size of the basis vector
- Can we do better?

Rotation

$$
\begin{array}{ll}
e_{0}^{\prime}=(|a|,|b|)=(\cos (\alpha), \sin (\alpha)) & \cos (\alpha)=\frac{|a|}{\left|e_{0}^{\prime}\right|}=\frac{|a|}{1}=|a| \\
e_{1}^{\prime}=\left(\left|a a^{\prime}\right|,\left|b^{\prime}\right|\right)=(-\sin (\alpha), \cos (\alpha))
\end{array}
$$

Rotation

- So if we rotate by α in counter-clockwise order in 2D, the transformation matrix is:

$$
\begin{aligned}
& \mathbf{e}_{0}^{\prime} \downarrow \\
& \left(\begin{array}{cc}
\cos (\alpha) & -\sin (\alpha) \\
\sin (\alpha) & \cos (\alpha)
\end{array}\right)
\end{aligned}
$$

- In 3D we can do rotations in each plane (xy, xz, $y z)$, so there can be 3 different matrices.

Rotation

- To do a rotation around an arbitrary axis, we can:
- Rotate that axis to be the x-axis
- Rotate around the new x -axis $\left.\longleftarrow \longleftarrow \left\lvert\, \begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos (\alpha) & -\sin (\alpha) & 0 \\ 0 & \sin (\alpha) & \cos (\alpha) & 0 \\ 0 & 0 & 0 & 1\end{array}\right.\right)$ (move the old x-axis back)
- OpenGL provides a command for rotating around a given axis.
- Generally quaternions are used for rotations.

Quaternions are elements of a number system that extend the complex numbers...

Do we have everything now?

- We can scale, shear and rotate our geometry around the origin...

Affine Transformation Translation

Translation

- Imagine that a 1D world is located at $y=1$ line in 2D space.

- Notice that all the points are in the form: $(x, 1)$

Translation

- Imagine that a 1D world is located at $y=1$ line in 2D space.

- Notice that all the points are in the form: $(x, 1)$

Translation

$$
\tan \left(45^{\circ}\right)=1
$$

- Do a shear-x $\left(45^{\circ}\right)$ operation on the 2 D world!

- Everything has now moved 1 unit in x to the right from the original position.

Translation

- What if we do shear-x(63.4 ${ }^{\circ}$?

$$
\begin{aligned}
\tan \left(45^{\circ}\right) & =1 \\
\tan \left(63.4^{\circ}\right) & =2
\end{aligned}
$$

- We can do translation (movement)!

Translation

- When we represent our points in one dimension higher space, where the extra coordinate is 1 , we get to the homogeneous space.
$\left(\begin{array}{cc}1 & x_{t} \\ 0 & 1\end{array}\right) \cdot\binom{x}{1}=\binom{x+x_{t}}{1}$
$\left(\begin{array}{lll}1 & 0 & x_{t} \\ 0 & 1 & y_{t} \\ 0 & 0 & 1\end{array}\right) \cdot\left(\begin{array}{c}x \\ y \\ 1\end{array}\right)=\left(\begin{array}{c}x+x_{t} \\ y+y_{t} \\ 1\end{array}\right) \quad\left(\begin{array}{llll}1 & 0 & 0 & x_{t} \\ 0 & 1 & 0 & y_{t} \\ 0 & 0 & 1 & z_{t} \\ 0 & 0 & 0 & 1\end{array}\right) \cdot\left(\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right)=\left(\begin{array}{c}x+x_{t} \\ y+y_{t} \\ z+z_{t} \\ 1\end{array}\right)$

Transformations

- This together gives us a very good toolset to transform our geometry as we wish.

Used for perspective projection...

Multiple transformations

- Everything starts from the origin!
- To apply multiple transformations, just multiply matrices.

Multiple transformations

Our initial geometry defined by vertices: $(-1,-1),(1,-1),(1,1),(-1,1)$

Multiple transformations

Multiple transformations

Multiple transformations

- Combine the transformations to a single matrix.

$$
\left(\begin{array}{lll}
1 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
\cos \left(45^{\circ}\right) & -\sin \left(45^{\circ}\right) & 0 \\
\sin \left(45^{\circ}\right) & \cos \left(45^{\circ}\right) & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\cos \left(45^{\circ}\right) & -\sin \left(45^{\circ}\right) & 4 \\
\sin \left(45^{\circ}\right) & \cos \left(45^{\circ}\right) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- This works for combining different affine transformations, but the result is hard to read...
- Order of transformations / matrices is important!
- http://cgdemos.tume-maailm.pri.ee

Now You Know

Next time...

-What is color in computer graphics?

- How to color our rasterized pixels?
- Light calculations.

