Lighting and Shadows in Computer Graphics

Anett-Kristin Palmar

Previously...

What is lighting?

Point

Directional

Spotlight

Ambient

Diffuse

Ambient

Specular

What is lighting?

Point - lightbulb

Directional - sun

Spotlight - flashlight

Ambient -?

Diffuse

Ambient

Specular

Flat Shading

Flat Shading

Polygons drawn the same colour.

Lighting equation used once per polygon.

One normal for the entire polygon.

Cost-effective.

Gouraud Shading

Gouraud Shading

Colours are interpolated across the polygon.

Lighting equation used at each vertex.

Normal different for each vertex.

Phong Shading

Phong shading

Light intensity per pixel = cos(α) = l · n

Phong shading

Light intensity per pixel = cos(α) = l · n

• $L_{Acv} \cdot M_{Acv} + n^{T} \cdot I \cdot L_{Dcv} \cdot M_{Dcv} + (r^{T} \cdot v)^{c} \cdot L_{Scv} \cdot M_{Scv}$

cv = colour value

V

cv = colour value

(red. green, blue)

 $\bullet \quad \mathsf{L}_{\mathsf{Acv}} \cdot \; \mathsf{M}_{\mathsf{Acv}} + \mathsf{n}^{\mathsf{T}} \cdot \mathsf{I} \cdot \mathsf{L}_{\mathsf{Dcv}} \cdot \; \mathsf{M}_{\mathsf{Dcv}} + (\mathsf{r}^{\mathsf{T}} \cdot \mathsf{v})^{\mathsf{c}} \cdot \mathsf{L}_{\mathsf{Scv}} \cdot$ Material reflected light scattered light

(red. green, blue)

cv = colour value

• $L_{Acv} \cdot M_{Acv} + n^{T} \cdot I \cdot L_{Dcv} \cdot M_{Dcv} + (r^{T} \cdot v)^{c} \cdot L_{Scv} \cdot M_{Scv}$

cv = colour value

V

• $L_{Acv} \cdot M_{Acv} + n^{T} \cdot I \cdot L_{Dcv} \cdot M_{Dcv} + (r^{T} \cdot v)^{c} \cdot L_{Scv}$ Material shininess beta scattered light direction towards viewer

(red. green, blue)

cv = colour value

•
$$L_{Acv} \cdot M_{Acv} + n^{T} \cdot I \cdot L_{Dcv} \cdot M_{Dcv} + (r^{T} \cdot v)^{c} \cdot L_{Scv}$$

Ambient light

Diffuse reflectance

Specular reflectance term

cv = colour value

V

Blinn-Phong Lighting Model

Specular reflectance term

(red. green. blue)

Why?

Phong

round highlight

often used

Blinn-Phong

thin elongated

highlight

more efficient approaching infinity

Lighting effects

Opaque

impenetrability to electromagnetic ect radiation

Translucent

Allows some light to pass through

Transparent

Allows light to pass through

Caustics

Reflections through mediums

Particle effects

Emitter

Simulation

Render

Subsurface scattering

Light interacting with a translucent object

Global Illumination

Global Illumination

More accurate to reality, but expensive and slower.

Indirect illumination.

Ray tracing

Simulates rays of light hitting virtual objects.

High (light) realism, not suited for real-time applications.

Path tracing

Using random directions, ray bounces calculate colour.

A lot of times per pixel.

soft shadows, depth of field, motion blur, caustics, ambient occlusion, indirect lighting

Path tracing Shooting rays vs gathering rays

Path tracing Energy redistribution

Metropolis light transport

Bidirectional path tracing

Distribution of brightness

Explore nearby paths

Photon mapping

Great for caustics, works with specular

Rays from the light source, rays from the camera

Photon map

Ray tracing until intersection

Lightcut

Light source clusters

Error map

More lights, less noise

Point based global illumination

Point cloud of the directly illuminated geometry

in the scene.

Ray tracing, disk approximation and clusters

Radiosity

Patches

View factor

Light bounces

Radiosity

Ambient occlusion

Casts no clear shadows

Real-time applications

Voxel-based global illumination

opacity map, emittance map

3D clipmap

Diffuse, specular cones

Real-time applications

Shadows

What is it?

Light source blocked by an opaque object

Hard shadow

Soft shadow

Shadow Map

Z-buffer

Multiple lights - multiple maps

Compare coordinates to test

Draw object

Shadow Volume

Shadow geometry

Silhouette edge

Closed volume

Thank you for listening!