

Computer Graphics

The Vertex and Fragment Shader

Raimond Tunnel

The Standard Graphics Pipeline

WebGL

● Based on OpenGL ES 2.0
● Used in the browsers for accessing the pipeline
● Has a shader programming language GLSL

● In newer OpenGL the syntax is different, but the ideas are the same...

Shaders

● First we will have a triangle
● All meshes are made up of triangles

● Triangle will have 3 vertices

Shaders

● The Vertex Shader will be ran on the 3 vertices
● Purpose: transform positions from local space

to clip space (and later screen space)

● Rasterization will create fragments (pixels)
● On those the Fragment Shader will be ran
● Purpose: color the pixels

● Uniform variables – global values accessable
from all shaders

● Attribute variables – values associated with
each vertex

● Varying variables – values assigned in the
vertex shader and interpolated to fragments

Three.js

● JavaScript library on top of WebGL
● Makes life easier

● OOP
● Encapsulates lower level WebGL stuff
● Provides out of the box working graphics algorithms

https://threejs.org/

https://threejs.org/

Task 1 – Coloring a Sphere

● Download the base files
● Open: 1 – Coloring a Sphere.html

● In Notepad++
● In SublimeText
● In your favourite code editor

● Let's look at the code...

Lambertian Reflectance Model

● We assume that our material reflects light
equally in all directions
● The material is an ideal matte

Lambertian Reflectance Model

● In which case the surface point emits more light?

Lambertian Reflectance Model

● With simple trigonometry it is easy to see that the
light reaching one surface unit is proportional
to the cosine between the surface normal and
the vector towards the light source.

Lambertian Reflectance Model

● Greater the angle, less light reaches one point

Lambertian Reflectance Model

● Oh my...

Lambertian Reflectance Model

● When the cosine is negative, we make it 0.
● The dot product (skalaarkorrutis):

● When the vectors are normalized, we get:

v⋅u=∣v∣⋅∣u∣⋅cos(angle(u , v))

v⋅u=v1⋅u1+v2⋅u2+v3⋅u3

Geometric definition

Algebraic definition

v⋅u=v1⋅u1+v2⋅u2+v3⋅u3=cos(angle (u , v))

Lambertian Reflectance Model

● Intensity of the reflected light also depends on:
● The intensity of the light source
● The reflectivity of the material

● In computer graphcis we store the intensities of
the red, green and blue channel sperately.

I RGB=LRGB⋅M RGB⋅max (0,vectorTorwardsLight⋅normal)

How much light

reaches our surface?How much our

material reflects?How much our light
source emits?

Pixel color!

How much our

material reflects?How much our

material reflects?

Let's make it!

What happens when you have errors?

Ambient Light

● In reality the light does not only come from the
light source

● Light bounces around and comes from all
directions – that light is called ambient light

● Simplest way to take that into account is to just
add a small value to the model

● Often the ambient material property is the same

I=LA⋅M A+LL⋅M L⋅max(0,vectorTorwardsLight⋅normal)

I=M⋅(LA+LL⋅max (0,vectorTorwardsLight⋅normal))

Add ambient light to the model

Toon Shading

● Aka cel shading
● Toon shading discretizes the colors

● At times an outline of objects is also drawn, but
that is a bit more complicated to do...

Toon Shading

● Open: 2 – Discrete Sphere.html
● Follow the instructions in the fragment shader

to discretize the colors
● Feel free to experiment yourself...

Wobbly Sphere

● Open: 3 – Wobbly Sphere.html
● Follow the instructions in the vertex shader

and on the CPU side
● Make the vertices of the sphere move
● Feel free to go wild...

Texturing
● Texturing is mapping a 2D image to a 3D surface
● This is done by specifying 2D texture coordinates

(called UV coordinates) for each vertex
● The mapping done in a 3D modelling software

Texturing

● Open: 4 – Hut.html
● As you can guess, if we interpolate the UV

coordinates, the corresponding fragments will
get the correct interpolated UV coordinate

● If we sample the base color from those
coordinates, the object will be textured

Thanks!

● You now have good shader programming skills!

	Slaid 1
	Slaid 2
	Slaid 3
	Slaid 4
	Slaid 5
	Slaid 6
	Slaid 7
	Slaid 8
	Slaid 9
	Slaid 10
	Slaid 11
	Slaid 12
	Slaid 13
	Slaid 14
	Slaid 15
	Slaid 16
	Slaid 17
	Slaid 18
	Slaid 19
	Slaid 20
	Slaid 21
	Slaid 22
	Slaid 23
	Slaid 24
	Slaid 25
	Slaid 26
	Slaid 27

